

International Journal of Mathematics And its Applications

New Class of αg^*p -Continuous Functions in Topological Spaces

Research Article

J.Raja Kumari^{1*} and C.Sekar¹

1 Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, TamilNadu, India.

Abstract: The aim of this paper is to introduce and study the new class of functions namely αg^*p -totally continuous functions and totally αg^*p -continuous functions. Further the relationship between this new class with other classes of existing functions are established. Also strongly $(\alpha g^*p)^*$ -continuous functions in topological spaces are introduced and studied.

MSC: 54C10.

Keywords: αg^*p -totally continuous function, totally αg^*p -continuous function, strongly $(\alpha g^*p)^*$ -continuous function, αg^*p -co-Hausdorff space.

© JS Publication.

1. Introduction

In 1980, Jain [2] introduced the concept of totally continuous functions. T. M. Nour [9] introduced the concept of totally semi-continuous functions as a generalization of totally continuous functions and several properties of totally semi-continuous functions were obtained. Benchalli et al. [1] introduced and studied semi-totally continuous and semi-totally open functions. Veerakumar [14] introduced totally pre-continuous and strongly pre-continuous functions as alternative stronger forms of totally continuous functions and strongly continuous functions respectively. In this paper, we introduce a new class of continuous functions called αg^*p -totally continuous functions and totally αg^*p -continuous functions and investigate some of their fundamental properties. Also we define strongly (αg^*p)*-continuous functions in topological spaces.

Throughout this paper, the spaces X ,Y and Z always mean topological spaces (X, τ) , (Y, σ) and (Z, η) respectively. For a subset A of X, the closure and the interior of A in X are denoted by cl(A) and int(A) respectively. The union of all preopen sets of X contained in A is called pre-interior of A and it is denoted by pint(A). The intersection of all preclosed sets of X containing A is called pre-closure of A and it is denoted by pcl(A). Also the collection of all αg^*p -open subsets of X is denoted by αg^*p -O(X).

2. Preliminaries

We recall the following definitions and notations, which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called

^{*} E-mail: rajakumarieben@gmail.com

- (1). preopen [7] if $A \subseteq int$ (cl (A)) and preclosed if cl (int(A)) $\subseteq A$.
- (2). α -open [8] if $A \subseteq int$ (cl (int (A))) and α -closed if $cl(int(cl(A))) \subseteq A$.

Definition 2.2. A subset A of a topological space (X, τ) is called

- (1). generalized closed (briefly, g-closed) [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (2). α -generalized closed(briefly, α g-closed) [5] if α cl(A) \subseteq U whenever A \subseteq U and U is open in X.
- (3). generalized preclosed (briefly, gp-closed) [6] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (4). generalized star preclosed (briefly, g^*p -closed set) [13] if pcl (A) \subseteq U whenever A \subseteq U and U is g-open in X.
- (5). generalized pre star closed (briefly gp^* -closed set) [3] if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is gp-open in X.
- (6). α -generalized star closed (briefly, αg^* -closed set) if $\alpha cl (A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in X.

Definition 2.3 ([12]). A subset A of a topological space (X, τ) is called alpha generalized star preclosed set (briefly, αg^*p closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in X.

Definition 2.4 ([10]). For a subset A of (X, τ) , the intersection of all αg^*p -closed sets containing A is called the αg^*p -closure of A and is denoted by αg^*p -cl(A). That is, αg^*p -cl(A) = $\cap \{F : F \text{ is } \alpha g^*p$ -closed in X, $A \subseteq F \}$.

Definition 2.5. A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (1). totally continuous [2] if $f^{-1}(V)$ is clopen in X for each open set V of Y.
- (2). totally pre-continuous [14] at each point of X if for each open subset V in Y containing f(x), there exists a pre-clopen subset U in X containing x such that $f(U) \subset V$.

Definition 2.6 ([10]). A subset A of a topological space (X, τ) is called

- (1). $\alpha g^* p$ -continuous if $f^{-1}(V)$ is $\alpha g^* p$ -closed in (X, τ) for every closed set V in (Y, σ) .
- (2). $\alpha g^* p$ -irresolute if $f^{-1}(V)$ is $\alpha g^* p$ -closed in (X, τ) for every $\alpha g^* p$ -closed set V in (Y, σ) .
- (3). αg^*p -closed if f(V) is αg^*p -closed in (Y, σ) for every αg^*p -closed set V in (X, τ) .
- (4). αg^*p -open if f(V) is αg^*p -open in (Y, σ) for every αg^*p -open set V in (X, τ) .

Definition 2.7 ([11]). A topological space X is said to be αg^*p -connected if X cannot be written as the disjoint union of two non empty αg^*p -open sets in X.

Definition 2.8 ([10]). A space (X, τ) is called

- (1). an αg^*p -space if every αg^*p -closed set is closed.
- (2). a $T_{\alpha g*p}$ -space if every $\alpha g*p$ -closed set is preclosed.

Definition 2.9 ([15]). A space X is said to be

- (1). T_1 if for every pair of distinct points x and y in X there exist open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
- (2). T_2 if for each distinct points x, y in X, there exist two disjoint open sets U and V containing x and y respectively.

3. $\alpha g^* p$ -totally Continuous Functions

In this section we define αg^*p -totally continuous function and investigate their fundamental properties

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be αg^*p -totally continuous function if the inverse image of every αg^*p -open set of Y is clopen in X.

Theorem 3.2. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is αg^*p -totally continuous function if and only if the inverse image of every αg^*p -closed subset of Y is clopen in X.

Proof. Let F be any αg^*p -closed set in Y. Then Y \ F is a αg^*p -open set in Y. By definition, $f^{-1}(Y \setminus F)$ is clopen in X. That is, X \ $f^{-1}(F)$ is clopen in X. This implies $f^{-1}(F)$ is clopen in X.

Conversely if V is αg^*p -open in Y then Y \ V is αg^*p -closed in Y. By assumption, $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is clopen in X, which implies $f^{-1}(V)$ is clopen in X. Therefore f is αg^*p -totally continuous function.

Theorem 3.3.

(1). Every αg^*p -totally continuous function is totally continuous.

(2). Every totally continuous function is αg^*p -continuous.

Proof.

- (1). Let U be any open subset of Y. Since every open set is αg^*p -open, U is αg^*p -open in Y and $f: (X, \tau) \to (Y, \sigma)$ is αg^*p -totally continuous, it follows that $f^{-1}(U)$ is clopen in X.
- (2). Obvious.

Remark 3.4. The converse of Theorem 3.3 is not true, which can be verified from the following examples.

Example 3.5. Let $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a, b\}, \{c, d\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}.$ αg^*p - $O(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}.$ Define a function $f : X \to Y$ by f(a) = c, f(b) = d, f(c) = a, f(d) = b. Then f is totally continuous but f is not αg^*p -totally continuous , since $f^{-1}(\{a, c\}) = \{a, c\}$ is not clopen in X.

Example 3.6. Let $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. $\alpha g^* p$ - $C(X) = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define $f : X \to Y$ by f(a) = c, f(b) = d, f(c) = a, f(d) = b. Then f is $\alpha g^* p$ -continuous but f is not totally continuous, since $f^{-1}(\{d\}) = \{b\}$ is not clopen in X.

Theorem 3.7. Let $f : (X, \tau) \to (Y, \sigma)$ be a function, where X and Y are topological spaces. Then the following are equivalent:

- (1). f is αg^*p -totally continuous.
- (2). For each $x \in X$ and each αg^*p -open set V in Y with $f(x) \in V$, there is a clopen set U in X such that $x \in U$ and $f(U) \subset V$.

Proof. (1) \Rightarrow (2) Suppose f is αg^*p -totally continuous and let V be any αg^*p -open set in Y containing f(x) such that $x \in f^{-1}(V)$. Since f is αg^*p -totally continuous, $f^{-1}(V)$ is clopen in X. Let $U = f^{-1}(V)$ then U is a clopen set in X and $x \in U$. Also $f(U) = f(f^{-1}(V)) \subset V$. This implies $f(U) \subset V$.

 $(2)\Rightarrow(1)$ Let V be a αg^*p -open set in Y. Let $x \in f^{-1}(V)$ be any arbitrary point. This implies $f(x) \in V$. Therefore by (2) there is a clopen set G_x containing x such that $f(G_x) \subset V$, which implies $G_x \subset f^{-1}(V)$ is a clopen neighbourhood of x. Since x is arbitrary, it implies $f^{-1}(V)$ is a clopen neighbourhood of each of its points. Hence it is a clopen set in X. Therefore f is αg^*p -totally continuous.

Definition 3.8. For a function $f : (X, \tau) \to (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Theorem 3.9. A function $f: (X, \tau) \to (Y, \sigma)$ is αg^*p -totally continuous, if its graph function is αg^*p -totally continuous.

Proof. Let $g: X \to X \times Y$ be a graph function of $f: X \to Y$. Suppose g is αg^*p -totally continuous and F be αg^*p -open in Y, then $X \times F$ is a αg^*p -open set of $X \times Y$. Since f is αg^*p -totally continuous, $g^{-1}(X \times F) = f^{-1}(F)$ is clopen in X. Thus the inverse image of every αg^*p -open set in Y is clopen in X. Therefore g is αg^*p -totally continuous.

Theorem 3.10. If $f : (X, \tau) \to (Y, \sigma)$ is αg^*p -totally continuous surjection and X is connected then Y is αg^*p -connected.

Proof. Suppose Y is not αg^*p -connected, let A and B form a disconnection of Y. Then A and B are αg^*p -open sets in Y and $Y = A \cup B$ where $A \cap B = \phi$. Also $f^{-1}(Y) = X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non empty clopen sets in X, because f is αg^*p -totally continuous. Further, $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(\phi) = \phi$. This implies X is not connected, which is a contradiction. Hence Y is αg^*p -connected.

Theorem 3.11. If a function $f : (X, \tau) \to (Y, \sigma)$ is totally continuous and Y is a αg^*p -space then f is αg^*p -totally continuous.

Proof. Let V be αg^*p -open in Y. Since Y is a αg^*p -space, V is open in Y. Also as f is totally continuous, $f^{-1}(V)$ is open and closed in X. Hence $f^{-1}(V)$ is clopen in X. Therefore f is αg^*p -totally continuous.

Theorem 3.12.

(1). If $f: X \to Y$ and $g: Y \to Z$ are αg^*p -totally continuous, then $g \circ f: X \to Z$ is also αg^*p -totally continuous.

(2). If $f: X \to Y$ is αg^*p -totally continuous and $g: Y \to Z$ is αg^*p -continuous, then $g \circ f: X \to Z$ is totally continuous.

Theorem 3.13. Let $f: X \to Y$ be a αg^*p -open map and $g: Y \to Z$ be any function. If $g \circ f: X \to Z$ is αg^*p -totally continuous, then g is αg^*p -irresolute.

Proof. Let $g \circ f : X \to Z$ be αg^*p -totally continuous. Let V be αg^*p -open set in Z. Since $g \circ f$ is αg^*p -totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in X. Since f is αg^*p -open, $f(f^{-1}(g^{-1}(V)))$ is αg^*p -open in Y. Then $g^{-1}(V)$ is αg^*p -open in Y. Hence g is αg^*p -irresolute.

Theorem 3.14. Let $f : X \to Y$ be αg^*p -totally continuous and $g : Y \to Z$ be any function, then $g \circ f : X \to Z$ is αg^*p -totally continuous if and only if g is αg^*p -irresolute.

Proof. Let V be a αg^*p -open subset of Z. Then $g^{-1}(V)$ is αg^*p -open in Y as g is αg^*p -irresolute. Then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is clopen in X. Hence $g \circ f : X \to Z$ is αg^*p -totally continuous. Conversely, let $g \circ f : X \to Z$ be αg^*p -totally continuous. Let V be a αg^*p -open set in Z, then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in X. Since f is αg^*p -totally continuous, $g^{-1}(V)$ is αg^*p -open in Y. Hence g is αg^*p -irresolute.

4. Totally αg^*p -continuous Functions

In this section we define the totally αg^*p -continuous and strongly $(\alpha g^*p)^*$ -continuous functions and investigate their fundamental properties

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (1). totally αg^*p -continuous at a point $x \in X$ if for each open subset V in Y containing f(x), there exists a αg^*p -clopen subset U in X containing x such that $f(U) \subset V$.
- (2). totally αg^*p -continuous if it has this property at each point of X.

Theorem 4.2. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$, whenever the class of αg^*p -closed sets in (X, τ) are closed under finite union:

- (1). f is totally αg^*p -continuous.
- (2). For every open set V of Y, $f^{-1}(V)$ is αg^*p -clopen in X.

Proof. $(1)\Rightarrow(2)$ Let V be an open subset of Y and let $x \in f^{-1}(V)$. Since $f(x) \in V$, by (1), there exists a αg^*p -clopen set U_x in X containing x such that $U_x \subset f^{-1}(V)$. We obtain $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$. Thus $f^{-1}(V)$ is αg^*p -clopen in X. (2) $\Rightarrow(1)$ Straightforward.

Definition 4.3. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly $(\alpha g^* p)^*$ -continuous if the inverse image of every $\alpha g^* p$ -open set of (Y, σ) is $\alpha g^* p$ -clopen in (X, τ) .

Theorem 4.4.

- (1). Every strongly $(\alpha g^*p)^*$ -continuous function is totally αg^*p -continuous.
- (2). Every totally αg^*p -continuous function is αg^*p -continuous.
- (3). Every totally continuous function is totally αg^*p -continuous.
- (4). Every αg^*p -totally continuous function is totally αg^*p -continuous.

Proof. (1) Let V be an open set in Y. Then V is αg^*p -open in Y. Then $f^{-1}(V)$ is αg^*p -clopen in X as f is a strongly $(\alpha g^*p)^*$ -continuous function. Hence f is totally αg^*p -continuous.

Remark 4.5. The converse of Theorem 4.4 is not true, which can be verified from the following examples.

Example 4.6. Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a, b\}, \{c, d\}\}$. Define $f : X \to Y$ by f(a) = d, f(b) = a, f(c) = c, f(d) = b. Then f is totally $\alpha g^* p$ -continuous but f is not strongly $(\alpha g^* p)^*$ -continuous, totally continuous and $\alpha g^* p$ -totally continuous.

Example 4.7. Let $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}, and \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}.$ $\alpha g^* p \cdot C(X) = \{X, \phi, \{b\}, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$ Define $f : X \to Y$ by f(a) = b, f(b) = c, f(c) = a, f(d) = d. Then f is $\alpha g^* p$ -continuous but f is not totally $\alpha g^* p$ -continuous.

Theorem 4.8. If $f : (X, \tau) \to (Y, \sigma)$ is a totally $\alpha g^* p$ -continuous map from a $\alpha g^* p$ -connected space (X, τ) onto a space (Y, σ) , then (Y, σ) is an indiscrete space.

153

Proof. On the contrary, suppose that (Y, σ) is not an indiscrete space. Let A be a proper non-empty open subset of (Y, σ) . Since f is totally αg^*p -continuous map, then $f^{-1}(A)$ is a proper non-empty αg^*p -clopen subset of X. Then $X = f^{-1}(A) \cup (X \setminus f^{-1}(A))$ which is a contradiction to the fact that X is αg^*p -connected. Therefore Y must be an indiscrete space. \Box

Theorem 4.9. Let $f: (X, \tau) \to (Y, \sigma)$ be a totally αg^*p -continuous map and Y be a T_1 -space. If A is a non-empty subset of a αg^*p -connected space X, then f(A) is singleton.

Proof. Suppose if possible f(A) is not singleton, let $f(x_1) = y_1 \in A$ and $f(x_2) = y_2 \in A$. Since $y_1, y_2 \in Y$ and Y is a T_1 space, then there exists an open set G in (Y, σ) containing y_1 but not y_2 . Since f is totally αg^*p -continuous, $f^{-1}(G)$ is a αg^*p -clopen set containing x_1 but not x_2 . Now $X = f^{-1}(G) \cup (X \setminus f^{-1}(G))$. Thus X is a union of two non-empty αg^*p -open sets which is a contradiction.

Definition 4.10. A space (X, τ) is said to be

- (1). $\alpha g^* p$ -co- T_1 if for each pair of disjoint points x and y of X, there exists $\alpha g^* p$ -clopen sets U and V containing x and y, respectively such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.
- (2). $\alpha g^* p$ -co- T_2 if for each pair of disjoint points x and y of X, there exists $\alpha g^* p$ -clopen sets U and V in X, respectively such that $x \in U$ and $y \in V$.
- (3). αg^*p -co-Hausdorff if every two distinct points of X can be separated by disjoint αg^*p -clopen sets.

Theorem 4.11. If $f : (X, \tau) \to (Y, \sigma)$ is totally $\alpha g^* p$ -continuous injective function and Y is a T_1 space, then X is $\alpha g^* p$ -co- T_1 .

Proof. Since Y is T_1 , for any distinct points x and y in X, there exists open sets V, W in Y such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is totally αg^*p -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are αg^*p -clopen subsets of (X, τ) such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is αg^*p -co- T_1 .

Theorem 4.12. If $f : (X, \tau) \to (Y, \sigma)$ is totally $\alpha g^* p$ -continuous injective function and Y is a T₂-space, then X is $\alpha g^* p$ -co-T₂.

Proof. For any distinct points x and y in X, there exists disjoint open sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$ and $U \cap V = \phi$. Since f is totally $\alpha g^* p$ -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are $\alpha g^* p$ -clopen in X containing x and y respectively. Therefore $f^{-1}(U) \cap f^{-1}(V) = \phi$ because $U \cap V = \phi$. This shows that X is $\alpha g^* p$ -co- T_2 .

Theorem 4.13. Let $f : (X, \tau) \to (Y, \sigma)$ be a totally $\alpha g^* p$ -continuous injective function. If Y is hausdorff, then X is $\alpha g^* p$ -co-Hausdorff.

Proof. Let x_1 and x_2 be two distinct points of X. Since f is injective and Y is Hausdorff, there exists open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. By previous theorem, $x_i \in f^{-1}(V_i) \in \alpha g^*p$ -clopen (X) for i=1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Thus X is αg^*p -co-Hausdorff.

Definition 4.14. A space X is said to be

- (1). αg^*p -co-compact if every αg^*p -clopen cover of X has a finite subcover.
- (2). αg^*p -co-compact relative to X if every cover of a αg^*p -clopen set of X has a finite subcover.
- (3). countably αg^*p -co-compact if every countable cover of X by αg^*p -clopen sets has a finite subcover.

(4). αg^*p -co-Lindelof if every αg^*p -clopen cover of X has a countable subcover.

Theorem 4.15. Let $f : (X, \tau) \to (Y, \sigma)$ be a totally $\alpha g^* p$ -continuous surjective function. Then the following statements hold.

- (1). If X is αg^*p -co-Lindelof then Y is Lindelof.
- (2). If X is countably αg^*p -co-compact then Y is countably compact.
- (3). If X is αg^*p -co-compact then Y is compact.
- (4). If X is countably αg^*p -co-compact then Y is countably compact.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be an open cover of Y. Since f is totally αg^*p -continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a αg^*p -clopen cover of X. Since X is αg^*p -co-Lindelof, there exists a countable subset I_0 of I such that $X = \bigcup \{V_{\alpha} : \alpha \in I\}$ and hence Y is Lindelof. Proof of 2 to 4 is similar.

References

- S.S.Benchalli and Umadevi I Neeli, Semi-Totally Continous Functions in Topological spaces, International Mathematical Forum, 6(10)(2011), 479-492.
- [2] R.C.Jain, The role of regularly open sets in general topology, Ph.D. Thesis, Meerut University, Institute of advanced studies, Meerut-India, (1980).
- P.Jayakumar, K.Mariappa and S.Sekar, On generalized gp*-closed set in topological spaces, Int. Journal of Math. Analysis, 33(7)(2013), 1635-1645.
- [4] N.Levine, Generalized closed sets in topology, Rend. Circ. Math.Palermo, 19(2)(1970), 89-96.
- [5] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [6] H.Maki, J.Umehara and T.Noiri, Every topological space is pre-T_{1/2} space, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 17(1996), 33-42.
- [7] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mapings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [8] O.Njastad, On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.
- [9] T.M.Nour, Totally semi-continuous functions, Indian J. Pure Appl. Math., 26(7)(1995), 675-678.
- [10] J.Rajakumari and C.Sekar, On αg*p-Continuous and αg*p-irresolute Maps in Topological Spaces, International Journal of Mathematical Archive, 7(8)(2016), 1-8.
- [11] J.Rajakumari and C.Sekar, On αg^*p -Connectedness and αg^*p -Compactness in Topological Spaces, (communicated).
- [12] C.Sekar and J.Rajakumari, A new notion of generalized closed sets in Topological Spaces, International Journal of Mathematics Trends and Technology, 36(2)(2016), 124-129.
- [13] M.K.R.S.Veera kumar, g*-preclosed sets, Indian J.Math., 44(2)(2002), 51-60.
- [14] M.K.R.S.Veera Kumar, On totally continuity and strong continuity, Acta ciencia Indica, 27M(4)(2001), 439-444.
- [15] S.Willard, General Topology, Addison-Wesley Publishing Company Inc, (1970).