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1. Introduction

In 1980, Jain [2] introduced the concept of totally continuous functions. T. M. Nour [9] introduced the concept of totally

semi-continuous functions as a generalization of totally continuous functions and several properties of totally semi-continuous

functions were obtained. Benchalli et al. [1] introduced and studied semi-totally continuous and semi-totally open functions.

Veerakumar [14] introduced totally pre-continuous and strongly pre-continuous functions as alternative stronger forms of

totally continuous functions and strongly continuous functions respectively. In this paper, we introduce a new class of

continuous functions called αg*p-totally continuous functions and totally αg*p-continuous functions and investigate some

of their fundamental properties. Also we define strongly (αg*p)*-continuous functions in topological spaces.

Throughout this paper, the spaces X ,Y and Z always mean topological spaces (X, τ), (Y, σ) and (Z, η) respectively. For a

subset A of X, the closure and the interior of A in X are denoted by cl(A) and int(A) respectively. The union of all preopen

sets of X contained in A is called pre-interior of A and it is denoted by pint(A). The intersection of all preclosed sets of

X containing A is called pre-closure of A and it is denoted by pcl(A). Also the collection of all αg*p-open subsets of X is

denoted by αg*p-O(X).

2. Preliminaries

We recall the following definitions and notations, which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called
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(1). preopen [7] if A ⊆ int (cl (A)) and preclosed if cl (int(A)) ⊆ A.

(2). α-open [8] if A ⊆ int (cl (int (A))) and α-closed if cl(int(cl(A))) ⊆ A.

Definition 2.2. A subset A of a topological space (X, τ) is called

(1). generalized closed (briefly, g-closed) [4] if cl(A) ⊆ U whenever A ⊆ U and U is open in X.

(2). α-generalized closed(briefly, αg-closed) [5] if α cl(A) ⊆ U whenever A ⊆ U and U is open in X.

(3). generalized preclosed (briefly, gp-closed) [6] if pcl(A) ⊆ U whenever A ⊆ U and U is open in X.

(4). generalized star preclosed (briefly, g*p-closed set) [13] if pcl (A) ⊆ U whenever A ⊆ U and U is g-open in X.

(5). generalized pre star closed (briefly gp*-closed set) [3] if cl (A) ⊆ U whenever A ⊆ U and U is gp-open in X.

(6). α-generalized star closed (briefly, αg*-closed set) if αcl (A) ⊆ U whenever A ⊆ U and U is αg-open in X.

Definition 2.3 ([12]). A subset A of a topological space (X, τ) is called alpha generalized star preclosed set (briefly, αg*p-

closed) if pcl(A) ⊆ U whenever A ⊆ U and U is αg-open in X.

Definition 2.4 ([10]). For a subset A of (X, τ), the intersection of all αg*p-closed sets containing A is called the αg*p-closure

of A and is denoted by αg*p-cl(A). That is, αg*p-cl(A) = ∩{F : F is αg*p-closed in X , A ⊆ F }.

Definition 2.5. A function f : (X, τ)→ (Y, σ) is called

(1). totally continuous [2] if f−1(V ) is clopen in X for each open set V of Y .

(2). totally pre-continuous [14] at each point of X if for each open subset V in Y containing f(x), there exists a pre-clopen

subset U in X containing x such that f(U) ⊂ V .

Definition 2.6 ([10]). A subset A of a topological space (X, τ) is called

(1). αg*p-continuous if f−1(V ) is αg*p-closed in (X, τ) for every closed set V in (Y, σ).

(2). αg*p-irresolute if f−1(V ) is αg*p-closed in (X, τ) for every αg*p-closed set V in (Y, σ).

(3). αg*p-closed if f(V) is αg*p-closed in (Y, σ) for every αg*p-closed set V in (X, τ).

(4). αg*p-open if f(V) is αg*p-open in (Y, σ) for every αg*p-open set V in (X, τ).

Definition 2.7 ([11]). A topological space X is said to be αg*p-connected if X cannot be written as the disjoint union of

two non empty αg*p-open sets in X.

Definition 2.8 ([10]). A space (X, τ) is called

(1). an αg*p-space if every αg*p-closed set is closed.

(2). a Tαg∗p-space if every αg*p-closed set is preclosed.

Definition 2.9 ([15]). A space X is said to be

(1). T1 if for every pair of distinct points x and y in X there exist open sets U and V such that x ∈ U but y /∈ U and y ∈ V

but x /∈ V .

(2). T2 if for each distinct points x, y in X, there exist two disjoint open sets U and V containing x and y respectively.
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3. αg*p-totally Continuous Functions

In this section we define αg*p-totally continuous function and investigate their fundamental properties

Definition 3.1. A function f : (X, τ)→ (Y, σ) is said to be αg*p-totally continuous function if the inverse image of every

αg*p-open set of Y is clopen in X.

Theorem 3.2. A bijective function f : (X, τ)→ (Y, σ) is αg*p-totally continuous function if and only if the inverse image

of every αg*p-closed subset of Y is clopen in X.

Proof. Let F be any αg*p-closed set in Y. Then Y \ F is a αg*p-open set in Y. By definition, f−1(Y\ F) is clopen in X.

That is, X \ f−1(F ) is clopen in X. This implies f−1(F ) is clopen in X.

Conversely if V is αg*p-open in Y then Y \ V is αg*p-closed in Y. By assumption, f−1(Y \ V) = X \ f−1(V ) is clopen in

X, which implies f−1(V ) is clopen in X. Therefore f is αg*p-totally continuous function.

Theorem 3.3.

(1). Every αg*p-totally continuous function is totally continuous.

(2). Every totally continuous function is αg*p-continuous.

Proof.

(1). Let U be any open subset of Y. Since every open set is αg*p-open, U is αg*p-open in Y and f : (X, τ) → (Y, σ) is

αg*p-totally continuous, it follows that f−1(U) is clopen in X.

(2). Obvious.

Remark 3.4. The converse of Theorem 3.3 is not true, which can be verified from the following examples.

Example 3.5. Let X = Y = {a, b, c, d}, τ = {X,φ, {a, b}, {c, d}} and σ = {Y, φ, {a, b}}. αg*p-O(Y) =

{Y, φ, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}}. Define a function f : X → Y by f(a) = c,

f(b) = d, f(c) = a, f(d) = b. Then f is totally continuous but f is not αg*p-totally continuous , since f−1({a, c}) = {a, c}

is not clopen in X .

Example 3.6. Let X = Y = {a, b, c, d}, τ = {X,φ, {a}, {b}, {a, b}} and σ = {Y, φ, {d}, {c, d}, {a, c, d}, {b, c, d}}. αg*p-

C(X) = {X,φ, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}}. Define f : X → Y by f(a) = c, f(b) = d, f(c) = a, f(d) = b. Then f is

αg*p-continuous but f is not totally continuous , since f−1({d}) = {b} is not clopen in X.

Theorem 3.7. Let f : (X, τ) → (Y, σ) be a function, where X and Y are topological spaces. Then the following are

equivalent:

(1). f is αg*p-totally continuous.

(2). For each x ∈ X and each αg*p-open set V in Y with f(x) ∈ V , there is a clopen set U in X such that x ∈ U and

f(U) ⊂ V .
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Proof. (1)⇒(2) Suppose f is αg*p-totally continuous and let V be any αg*p-open set in Y containing f(x) such that

x ∈ f−1(V ). Since f is αg*p-totally continuous, f−1(V ) is clopen in X. Let U = f−1(V ) then U is a clopen set in X and

x ∈ U . Also f(U) = f(f−1(V )) ⊂ V . This implies f(U) ⊂ V .

(2)⇒(1) Let V be a αg*p-open set in Y. Let x ∈ f−1(V ) be any arbitrary point. This implies f(x) ∈ V . Therefore by

(2) there is a clopen set Gx containing x such that f(Gx) ⊂ V , which implies Gx ⊂ f−1(V ) is a clopen neighbourhood of

x. Since x is arbitrary, it implies f−1(V ) is a clopen neighbourhood of each of its points. Hence it is a clopen set in X.

Therefore f is αg*p-totally continuous.

Definition 3.8. For a function f : (X, τ) → (Y, σ), the subset {(x, f(x)) : x ∈ X} ⊂ X × Y is called the graph of f and is

denoted by G(f).

Theorem 3.9. A function f : (X, τ)→ (Y, σ) is αg*p-totally continuous, if its graph function is αg*p-totally continuous.

Proof. Let g : X → X × Y be a graph function of f : X → Y . Suppose g is αg*p-totally continuous and F be αg*p-open

in Y, then X × F is a αg*p-open set of X × Y . Since f is αg*p-totally continuous, g−1(X × F ) = f−1(F ) is clopen in X.

Thus the inverse image of every αg*p-open set in Y is clopen in X. Therefore g is αg*p-totally continuous.

Theorem 3.10. If f : (X, τ)→ (Y, σ) is αg*p-totally continuous surjection and X is connected then Y is αg*p-connected.

Proof. Suppose Y is not αg*p-connected, let A and B form a disconnection of Y. Then A and B are αg*p-open sets in Y

and Y = A ∪B where A ∩B = φ. Also f−1(Y ) = X = f−1(A) ∪ f−1(B), where f−1(A) and f−1(B) are non empty clopen

sets in X, because f is αg*p-totally continuous. Further, f−1(A) ∩ f−1(B) = f−1(φ) = φ. This implies X is not connected,

which is a contradiction. Hence Y is αg*p-connected.

Theorem 3.11. If a function f : (X, τ) → (Y, σ) is totally continuous and Y is a αg*p-space then f is αg*p-totally

continuous.

Proof. Let V be αg*p-open in Y. Since Y is a αg*p-space, V is open in Y. Also as f is totally continuous, f−1(V ) is open

and closed in X. Hence f−1(V ) is clopen in X. Therefore f is αg*p-totally continuous.

Theorem 3.12.

(1). If f : X → Y and g : Y → Z are αg*p-totally continuous, then g ◦ f : X → Z is also αg*p-totally continuous.

(2). If f : X → Y is αg*p-totally continuous and g : Y → Z is αg*p-continuous, then g ◦ f : X → Z is totally continuous.

Theorem 3.13. Let f : X → Y be a αg*p-open map and g : Y → Z be any function. If g ◦ f : X → Z is αg*p-totally

continuous, then g is αg*p-irresolute.

Proof. Let g ◦ f : X → Z be αg*p-totally continuous. Let V be αg*p-open set in Z. Since g ◦ f is αg*p-totally continuous,

(g ◦ f)−1(V ) = f−1(g−1(V )) is clopen in X. Since f is αg*p-open, f(f−1(g−1(V ))) is αg*p-open in Y. Then g−1(V ) is

αg*p-open in Y. Hence g is αg*p-irresolute.

Theorem 3.14. Let f : X → Y be αg*p-totally continuous and g : Y → Z be any function, then g ◦ f : X → Z is

αg*p-totally continuous if and only if g is αg*p-irresolute.

Proof. Let V be a αg*p-open subset of Z. Then g−1(V ) is αg*p-open in Y as g is αg*p-irresolute. Then f−1(g−1(V )) =

(g ◦ f)−1(V ) is clopen in X. Hence g ◦ f : X → Z is αg*p-totally continuous. Conversely, let g ◦ f : X → Z be αg*p-totally

continuous. Let V be a αg*p-open set in Z, then (g ◦ f)−1(V ) = f−1(g−1(V )) is clopen in X. Since f is αg*p-totally

continuous, g−1(V ) is αg*p-open in Y. Hence g is αg*p-irresolute.
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4. Totally αg*p-continuous Functions

In this section we define the totally αg*p-continuous and strongly (αg*p)*-continuous functions and investigate their fun-

damental properties

Definition 4.1. A function f : (X, τ)→ (Y, σ) is called

(1). totally αg*p-continuous at a point x ∈ X if for each open subset V in Y containing f(x), there exists a αg*p-clopen

subset U in X containing x such that f(U) ⊂ V .

(2). totally αg*p-continuous if it has this property at each point of X.

Theorem 4.2. The following statements are equivalent for a function f : (X, τ)→ (Y, σ), whenever the class of αg*p-closed

sets in (X, τ) are closed under finite union:

(1). f is totally αg*p-continuous.

(2). For every open set V of Y, f−1(V ) is αg*p-clopen in X.

Proof. (1)⇒(2) Let V be an open subset of Y and let x ∈ f−1(V ). Since f(x) ∈ V , by (1), there exists a αg*p-clopen set

Ux in X containing x such that Ux ⊂ f−1(V ). We obtain f−1(V ) = ∪{Ux : x ∈ f−1(V )}. Thus f−1(V ) is αg*p-clopen in X.

(2)⇒(1) Straightforward.

Definition 4.3. A function f : (X, τ) → (Y, σ) is said to be strongly (αg*p)*-continuous if the inverse image of every

αg*p-open set of (Y, σ) is αg*p-clopen in (X, τ).

Theorem 4.4.

(1). Every strongly (αg*p)*-continuous function is totally αg*p-continuous.

(2). Every totally αg*p-continuous function is αg*p-continuous.

(3). Every totally continuous function is totally αg*p-continuous.

(4). Every αg*p-totally continuous function is totally αg*p-continuous.

Proof. (1) Let V be an open set in Y. Then V is αg*p-open in Y. Then f−1(V ) is αg*p-clopen in X as f is a strongly

(αg*p)*-continuous function. Hence f is totally αg*p-continuous.

Proof is obvious for (2) to (4).

Remark 4.5. The converse of Theorem 4.4 is not true, which can be verified from the following examples.

Example 4.6. Let X = Y = {a, b, c, d}, τ = {X,φ, {a, b}} and σ = {Y, φ, {a, b}, {c, d}}. Define f : X → Y by f(a) = d,

f(b) = a, f(c) = c, f(d) = b. Then f is totally αg*p-continuous but f is not strongly (αg*p)*-continuous, totally continuous

and αg*p-totally continuous.

Example 4.7. Let X = Y = {a, b, c, d}, τ = {X,φ, {a}, {b, c}, {a, b, c}}, and σ = {Y, φ, {a}, {b}, {a, b}, {b, c}, {a, b, c}}.

αg*p-C(X) = {X,φ, {b}, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}}. Define f : X → Y by f(a) = b, f(b) = c,

f(c) = a, f(d) = d. Then f is αg*p-continuous but f is not totally αg*p-continuous.

Theorem 4.8. If f : (X, τ) → (Y, σ) is a totally αg*p-continuous map from a αg*p-connected space (X, τ) onto a space

(Y, σ), then (Y, σ) is an indiscrete space.
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Proof. On the contrary, suppose that (Y, σ) is not an indiscrete space. Let A be a proper non-empty open subset of (Y, σ) .

Since f is totally αg*p-continuous map , then f−1(A) is a proper non-empty αg*p-clopen subset of X. Then X = f−1(A)∪(X

\ f−1(A)) which is a contradiction to the fact that X is αg*p-connected. Therefore Y must be an indiscrete space.

Theorem 4.9. Let f : (X, τ) → (Y, σ) be a totally αg*p-continuous map and Y be a T1-space. If A is a non-empty subset

of a αg*p-connected space X, then f(A) is singleton.

Proof. Suppose if possible f(A) is not singleton, let f(x1) = y1 ∈ A and f(x2) = y2 ∈ A. Since y1, y2 ∈ Y and Y is a

T1 space, then there exists an open set G in (Y, σ) containing y1 but not y2. Since f is totally αg*p-continuous, f−1(G)

is a αg*p-clopen set containing x1 but not x2. Now X = f−1(G)∪ (X \ f−1(G)). Thus X is a union of two non-empty

αg*p-open sets which is a contradiction.

Definition 4.10. A space (X, τ) is said to be

(1). αg*p-co-T1 if for each pair of disjoint points x and y of X, there exists αg*p-clopen sets U and V containing x and y,

respectively such that x ∈ U , y /∈ U and x /∈ V , y ∈ V .

(2). αg*p-co-T2 if for each pair of disjoint points x and y of X, there exists αg*p-clopen sets U and V in X, respectively such

that x ∈ U and y ∈ V .

(3). αg*p-co-Hausdorff if every two distinct points of X can be separated by disjoint αg*p-clopen sets.

Theorem 4.11. If f : (X, τ)→ (Y, σ) is totally αg*p-continuous injective function and Y is a T1 space, then X is αg*p-co-

T1.

Proof. Since Y is T1, for any distinct points x and y in X, there exists open sets V, W in Y such that f(x) ∈ V , f(y) /∈ V ,

f(x) /∈ W and f(y) ∈ W . Since f is totally αg*p-continuous, f−1(V ) and f−1(W ) are αg*p-clopen subsets of (X, τ) such

that x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and y ∈ f−1(W ). This shows that X is αg*p-co-T1.

Theorem 4.12. If f : (X, τ)→ (Y, σ) is totally αg*p-continuous injective function and Y is a T2-space, then X is αg*p-co-

T2.

Proof. For any distinct points x and y in X, there exists disjoint open sets U and V in Y such that f(x) ∈ U and f(y) ∈ V

and U ∩V = φ. Since f is totally αg*p-continuous, f−1(U) and f−1(V ) are αg*p-clopen in X containing x and y respectively.

Therefore f−1(U) ∩ f−1(V ) = φ because U ∩ V = φ. This shows that X is αg*p-co-T2.

Theorem 4.13. Let f : (X, τ) → (Y, σ) be a totally αg*p-continuous injective function. If Y is hausdorff, then X is

αg*p-co-Hausdorff.

Proof. Let x1 and x2 be two distinct points of X. Since f is injective and Y is Hausdorff, there exists open sets V1 and V2

in Y such that f(x1) ∈ V1, f(x2) ∈ V2 and V1 ∩ V2 = φ. By previous theorem, xi ∈ f−1(V i) ∈ αg*p-clopen (X) for i=1, 2

and f−1(V1) ∩ f−1(V2) = φ. Thus X is αg*p-co-Hausdorff.

Definition 4.14. A space X is said to be

(1). αg*p-co-compact if every αg*p-clopen cover of X has a finite subcover.

(2). αg*p-co-compact relative to X if every cover of a αg*p-clopen set of X has a finite subcover.

(3). countably αg*p-co-compact if every countable cover of X by αg*p-clopen sets has a finite subcover.
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(4). αg*p-co-Lindelof if every αg*p-clopen cover of X has a countable subcover.

Theorem 4.15. Let f : (X, τ) → (Y, σ) be a totally αg*p-continuous surjective function. Then the following statements

hold.

(1). If X is αg*p-co-Lindelof then Y is Lindelof.

(2). If X is countably αg*p-co-compact then Y is countably compact.

(3). If X is αg*p-co-compact then Y is compact.

(4). If X is countably αg*p-co-compact then Y is countably compact.

Proof. Let {Vα : α ∈ I} be an open cover of Y. Since f is totally αg*p-continuous, {f−1(Vα) : α ∈ I} is a αg*p-clopen

cover of X. Since X is αg*p-co-Lindelof, there exists a countable subset I0 of I such that X = ∪{Vα : α ∈ I} and hence Y is

Lindelof. Proof of 2 to 4 is similar.
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