International Journal of Mathematics And its Applications

Snakes Related Sum Perfect Square Graphs

S.G.Sonchhatra ${ }^{1 *}$ and G.V.Ghodasara ${ }^{2}$
1 Ph.D. Scholar, School of Science, R.K.University, Rajkot, India.
2 Assistant Professor, H. \& H. B. Kotak Institute of Science, Rajkot, India.

Abstract

Let $G=(V, E)$ be a simple (p, q) graph and $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ be a bijection. We define $f^{*}: E(G) \rightarrow \mathbb{N}$ by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E(G)$. If f^{*} is injective, then f is called sum perfect square labeling. A graph which admits sum perfect square labeling is called sum perfect square graph. In this paper we prove that several snakes related graphs are sum perfect square.

MSC: 05C78.

Keywords: Sum perfect square graphs, triangular snakes, quadrilateral snakes.
(C) JS Publication.

1. Introduction

We consider simple, finite, undirected graph $G=(p, q)$ (with p vertices and q edges). The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$ respectively. For all other terminology and notations we follow Harary[1]. Sonchhatra and Ghodasara[5] have initiated study of sum perfect square graphs in 2016. Due to [5] it becomes possible to construct a graph, whose all edges can be labeled by perfect square integers only. In [5] we have proved P_{n}, C_{n}, cycle C_{n} with one chord, cycle C_{n} with twin chords, tree, $K_{1, n}, T_{m, n}$ are sum perfect square graphs. In this paper we prove that several snakes related graphs are sum perfect square.

1.1. Definitions

Definition 1.1 ([5]). Let $G=(p, q)$ be a graph. A bijection $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ is called sum perfect square labeling of G, if the induced function $f^{*}: E(G) \rightarrow \mathbb{N}$ given by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$ is injective, for all $u, v \in V(G)$. A graph which admits sum perfect square labeling is called sum perfect square graph.

Definition 1.2 ([4]). The triangular snakes $T_{n}, n>1$ are obtained by replacing each edge of path P_{n} by a triangle C_{3}.

Definition 1.3 ([4]). The double triangular snakes $D\left(T_{n}\right), n>1$ are obtained by replacing each edge of P_{n} by two triangles C_{3}.

Definition 1.4 ([4]). The alternating triangular snakes $A\left(T_{n}\right), n>1$ are obtained from a path $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by joining v_{i} and v_{i+1} (alternatively) to new vertex u_{i}. i.e. every alternate edge of a path is replaced by C_{3}.

[^0]Definition 1.5 ([4]). The double alternating triangular snakes $D A\left(T_{n}\right)$ are obtained from a path $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by joining v_{i} and v_{i+1} (alternatively) to new vertices u_{i} and w_{i}. i.e. the double alternating triangular snakes $D A\left(T_{n}\right)$ consists of two alternative triangular snakes that have a common path.

Definition 1.6 ([6]). The alternating quadrilateral snakes $A\left(Q_{n}\right)$ are obtained from a path $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by joining v_{i} and v_{i+1} (alternatively) to new vertices u_{i} and w_{i}, in which each u_{i} and w_{i} are also joined by an edge. i.e. every alternate edge of a path is replaced by C_{4}.

Definition 1.7 ([6]). The double alternating quadrilateral snakes $D A\left(Q_{n}\right)$ are obtained from a path $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by joining v_{i} and v_{i+1} (alternatively) to new vertices u_{i}, w_{i} and $u_{i}^{\prime}, w_{i}^{\prime}$, in which each u_{i} is adjacent to w_{i} and each u_{i}^{\prime} is adjacent to w_{i}^{\prime}, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. i.e. double alternating quadrilateral snake $D A\left(Q_{n}\right)$ consists of two alternating quadrilateral snakes that have a common path.

2. Main Results

Theorem 2.1. T_{n} are sum perfect square graphs, $\forall n \in \mathbb{N}$.
Proof. Let $V\left(\left(T_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime} ; 1 \leq i \leq n-1\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and v_{i}^{\prime} is adjacent with v_{i} and v_{i+1}, for $1 \leq i \leq n-1, E\left(T_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=v_{i} v_{i}^{\prime} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{e_{i}^{(2)}=v_{i+1} v_{i}^{\prime} ; 1 \leq i \leq n-1\right\}$. Here $\left|V\left(T_{n}\right)\right|=2 n-1$ and $\left|E\left(T_{n}\right)\right|=3 n-3$. We define a bijection $f: V\left(T_{n}\right) \rightarrow$ $\{0,1,2, \ldots, 2 n-2\}$ as $f\left(v_{i}\right)=2 i-2,1 \leq i \leq n$ and $f\left(v_{i}^{\prime}\right)=2 i-1,1 \leq i \leq n-1$. Let $f^{*}: E\left(T_{n}\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E\left(T_{n}\right)$.

Injectivity for edge labels:

For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(1)}\right)$ and $f^{*}\left(e_{i}^{(2)}\right)$ are also increasing, $1 \leq i \leq n-1$.
Claim: $f^{*}\left(e_{i}\right) \neq f^{*}\left(e_{i}^{(1)}\right) \neq f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq n-1$.
We have $f^{*}\left(e_{i}\right)=(4 i-2)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(4 i-3)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(4 i-1)^{2}, 1 \leq i \leq n-1$. As $f^{*}\left(e_{i}^{(j)}\right)$ are odd, $j=1,2$, $1 \leq i \leq n-1$ and $f^{*}\left(e_{i}\right)$ are even, it is enough to prove $f^{*}\left(e_{i}^{(1)}\right) \neq f^{*}\left(e_{i}^{(2)}\right)$. Assume if possible $f^{*}\left(e_{i}^{(1)}\right)=f^{*}\left(e_{i}^{(2)}\right)$, for some $i, 1 \leq i \leq n-1$
$\Longrightarrow 4 i-3=4 i-1$ or $4 i-3=1-4 i$
$\Longrightarrow 3=1$ or $i=\frac{1}{2}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
So $f^{*}: E\left(T_{n}\right) \rightarrow \mathbb{N}$ is injective. Hence T_{n} are sum perfect square graphs, $\forall n \in \mathbb{N}$.

The below illustration provides better idea of defined labeling pattern in above theorem.

Figure 1. Sum perfect square labeling of T_{5}.

Theorem 2.2. $D\left(T_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.

Proof. Let $V\left(D\left(T_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{i}^{\prime \prime} ; 1 \leq i \leq n-1\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $v_{i}^{\prime}, v_{i}^{\prime \prime}$ are adjacent with $v_{i}, v_{i+1}, 1 \leq i \leq n-1 . E\left(D\left(T_{n}\right)\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{e_{i}^{(1)}=v_{i} v_{i}^{\prime} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(2)}=v_{i+1} v_{i}^{\prime} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(3)}=v_{i+1} v_{i}^{\prime \prime} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(4)}=v_{i} v_{i}^{\prime \prime} ; 1 \leq i \leq n-1\right\}$. Here $\left|V\left(D\left(T_{n}\right)\right)\right|=3 n-2$ and $\left|E\left(D\left(T_{n}\right)\right)\right|=5 n-5$. We define a bijection $f: V\left(D\left(T_{n}\right)\right) \rightarrow\{0,1,2, \ldots, 3 n-3\}$ as $f\left(v_{i}\right)=3 i-3,1 \leq i \leq n, f\left(v_{i}^{\prime}\right)=3 i-2,1 \leq i \leq n-1$ and $f\left(v_{i}^{\prime \prime}\right)=3 i-1,1 \leq i \leq n-1$. Let $f^{*}: E\left(D\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E\left(D\left(T_{n}\right)\right)$.
Injectivity for edge labels:
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(j)}\right)$ are also increasing, $1 \leq j \leq 4,1 \leq i \leq n-1$.
Claim: $f^{*}\left(e_{i}\right) \neq f^{*}\left(e_{i}^{(1)}\right) \neq f^{*}\left(e_{i}^{(2)}\right) \neq f^{*}\left(e_{i}^{(3)}\right) \neq f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq n-1$.
We have $f^{*}\left(e_{i}\right)=(6 i-3)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(6 i-5)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(6 i-2)^{2}, f^{*}\left(e_{i}^{(3)}\right)=(6 i-1)^{2}, f^{*}\left(e_{i}^{(4)}\right)=(6 i-4)^{2}, 1 \leq i \leq n-1$. As $f^{*}\left(e_{i}\right)$ and $f^{*}\left(e_{i}^{(j)}\right)$ are odd, $j=1,3,1 \leq i \leq n-1$, and $f^{*}\left(e_{i}^{(t)}\right), t=2,4,1 \leq i \leq n-1$ are even, it is enough to prove the following.
(1) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq n-1\right\}$.
(2) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq n-1\right\}$.
(3) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq n-1\right\}$.
(4) $\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq n-1\right\}$.

Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq n-1\right\}$, for some i.
$\Longrightarrow 6 i-3=6 i-5$ or $6 i-3=5-6 i$.
$\Longrightarrow 3=5$ or $i=\frac{2}{3}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq n-1\right\}$, for some i.
$\Longrightarrow 6 i-3=6 i-1$ or $6 i-3=1-6 i$.
$\Longrightarrow 3=1$ or $i=\frac{1}{3}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq n-1\right\}$, for some i.
$\Longrightarrow 6 i-5=6 i-1$ or $6 i-5=1-6 i$.
$\Longrightarrow 5=1$ or $i=\frac{1}{2}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq n-1\right\}$, for some i.
$\Longrightarrow 6 i-2=6 i-4$ or $6 i-2=4-6 i$.
$\Longrightarrow 2=4$ or $i=\frac{1}{2}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
So $f^{*}: E\left(D\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ is injective. Hence $D\left(T_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.

The below illustration provides better idea of defined labeling pattern in above theorem.

Figure 2. Sum perfect square labeling of $D T_{4}$.

Theorem 2.3. $A\left(T_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.
Proof. Case 1: Triangle starts from v_{1}.
$V\left(A\left(T_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively, such that u_{i} is adjacent with $v_{2 i-1}$ and $v_{2 i}$, $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor . E\left(A\left(T_{n}\right)\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i-1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(2)}=u_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Here $\left|V\left(A\left(T_{n}\right)\right)\right|=n+\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|E\left(A\left(T_{n}\right)\right)\right|=n-1+2\left\lfloor\frac{n}{2}\right\rfloor$. We define a bijection $f: V\left(A\left(T_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ as

$$
\begin{aligned}
& f\left(v_{i}\right)= \begin{cases}\frac{3 i-4}{2} ; & 1 \leq i \leq n, i \text { is even. } \\
\frac{3 i-3}{2} ; & 1 \leq i \leq n, i \text { is odd. }\end{cases} \\
& f\left(u_{i}\right)=3 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

Let $f^{*}: E\left(A\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$, $\forall u v \in E\left(A\left(T_{n}\right)\right)$.

Injectivity for edge labels for case 1:
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(1)}\right)$ and $f^{*}\left(e_{i}^{(2)}\right)$ are also increasing, $1 \leq i \leq n-1$.
Claim: $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. We have $f^{*}\left(e_{i}\right)=(3 i-2)^{2}$, $f^{*}\left(e_{i}^{(1)}\right)=(6 i-4)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(6 i-3)^{2}$. As $f^{*}\left(e_{i}^{(1)}\right)$ are even and $f^{*}\left(e_{i}^{(2)}\right)$ are odd, it is enough to prove the following.
(1) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(2) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 3 i-2=6 i-4$ or $3 i-2=4-6 i$.
$\Longrightarrow i=\frac{2}{3}$ or $i=\frac{2}{9}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 3 i-2=6 i-3$ or $3 i-2=3-6 i$.
$\Longrightarrow i=\frac{1}{3}$ or $i=\frac{5}{9}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Case 2: Triangle starts from v_{2}.
Subcase 1: n is odd.
For this subcase, the graph is isomorphic to the graph in case 1.
Subcase 2: n is even.
$V\left(A\left(T_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively, such that u_{i} is adjacent with $v_{2 i}$ and $v_{2 i+1}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 . E\left(A\left(T_{n}\right)\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup$ $\left\{e_{i}^{(2)}=u_{i} v_{2 i+1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. Here $\left|V\left(A\left(T_{n}\right)\right)\right|=n+\left\lfloor\frac{n}{2}\right\rfloor-1$ and $\left|E\left(A\left(T_{n}\right)\right)\right|=2 n-3$. We define a bijection $f: V\left(A\left(T_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+\left\lfloor\frac{n}{2}\right\rfloor-2\right\}$ as

$$
\begin{aligned}
& f\left(v_{i}\right)= \begin{cases}\left\lceil\frac{3 i-5}{2}\right\rceil ; & 2 \leq i \leq n, i \text { is even } \\
\left\lfloor\frac{3 i-5}{2}\right\rfloor ; & 2 \leq i \leq n, i \text { is odd. }\end{cases} \\
& f\left(u_{i}\right)=3 i, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } f\left(v_{1}\right)=0
\end{aligned}
$$

Let $f^{*}: E\left(A\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$, $\forall u v \in E\left(A\left(T_{n}\right)\right)$.

Injectivity for edge labels for subcase 2:

For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(1)}\right)$ and $f^{*}\left(e_{i}^{(2)}\right)$ are also increasing, $1 \leq i \leq n-1$.
Claim: $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.
We have $f^{*}\left(e_{1}\right)=1 f^{*}\left(e_{i}\right)=(3 i-3)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(6 i-2)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(6 i-1)^{2}$. For the arguments of rest of the edge labelings, we apply the similar arguments, which we provided in case 1 . So $f^{*}: E\left(A\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ is injective. Hence $A\left(T_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}, n>1$.

The below illustration provides better idea of defined labeling pattern in above theorem.

Figure 3. Sum perfect square labeling of $A\left(T_{9}\right)$.

Theorem 2.4. $D A\left(T_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.
Proof. Case 1 : Triangles start from v_{1}.
$V\left(D A\left(T_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively, such that u_{i} and w_{i} are adjacent with $v_{2 i-1}$ and $v_{2 i}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor . E\left(D A\left(T_{n}\right)\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{e_{i}^{(1)}=u_{i} v_{2 i-1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(2)}=u_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(3)}=w_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(4)}=w_{i} v_{2 i-1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Here $\left|V\left(D A\left(T_{n}\right)\right)\right|=n+2\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|E\left(D A\left(T_{n}\right)\right)\right|=n-1+4\left\lfloor\frac{n}{2}\right\rfloor$. We define a bijection $f: V\left(D A\left(T_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+2\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ as $f\left(u_{i}\right)=4 i-3$ and $f\left(w_{i}\right)=4 i-2,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Subcase 1: n is even.

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
2 i-1 ; 1 \leq i \leq n, i \text { is even. } \\
2 i-2 ; 1 \leq i \leq n, i \text { is odd. }
\end{array}\right.
$$

Subcase 2: n is odd.

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
2 i-1 ; 1 \leq i \leq n-1, i \text { is even. } \\
2 i-2 ; 1 \leq i \leq n-1, i \text { is odd. }
\end{array}\right.
$$

Let $f^{*}: E\left(D A\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$, $\forall u v \in E\left(D A\left(T_{n}\right)\right)$.
Injectivity for edge labels for subcase 1:
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(j)}\right)$ are also increasing, $1 \leq j \leq 4,1 \leq i \leq n-1$.
Claim: $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}, \neq$ $\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
We have $f^{*}\left(e_{i}\right)=(4 i-1)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(8 i-7)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(8 i-4)^{2}, f^{*}\left(e_{i}^{(3)}\right)=(8 i-6)^{2}, f^{*}\left(e_{i}^{(4)}\right)=(8 i-3)^{2}$. As $f^{*}\left(e_{i}\right)$ and $f^{*}\left(e_{i}^{(j)}\right)$ are odd, $j=1,4$, and $f^{*}\left(e_{i}^{(t)}\right), t=2,3$, are even, it is enough to prove the following.
(1) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(2) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(3) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(4) $\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 4 i-1=8 i-7$ or $4 i-1=7-8 i$.
$\Longrightarrow i=\frac{3}{2}$ or $i=\frac{2}{3}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 4 i-3=8 i-3$ or $4 i-1=3-8 i$.
$\Longrightarrow i=0$ or $i=\frac{1}{3}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 8 i-7=8 i-3$ or $8 i-7=3-8 i$.
$\Longrightarrow 7=3$ or $i=\frac{5}{8}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 8 i-4=8 i-6$ or $8 i-4=6-8 i$.
$\Longrightarrow 4=6$ or $i=\frac{5}{8}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.

Injectivity for edge labels for subcase 2:

The only difference in this case is due to $f^{*}\left(e_{n-1}\right)=(4 n-6)^{2}$, which is the highest edge label among all the labelings in $D A\left(T_{n}\right)$. Rest of the arguments for edge labelings will be similar as we provided in subcase 1.

Case 2: Triangles start from v_{2}.
Subcase $1: n$ is even.
$V\left(D A\left(T_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively such that u_{i} and w_{i} are adjacent with $v_{2 i}$ and $v_{2 i+1}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 . E\left(D A\left(T_{n}\right)\right)=\left\{e_{i}=\right.$ $\left.v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{e_{i}^{(2)}=u_{i} v_{2 i+1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \cup\left\{e_{i}^{(3)}=w_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\right.$ $\left\{e_{i}^{(4)}=w_{i} v_{2 i+1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. We note that $\left|V\left(D A\left(T_{n}\right)\right)\right|=n+2\left\lfloor\frac{n}{2}\right\rfloor-2$ and $\left|E\left(D A\left(T_{n}\right)\right)\right|=n-5+4\left\lfloor\frac{n}{2}\right\rfloor$. We define a bijection $f: V\left(D A\left(T_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+2\left\lfloor\frac{n}{2}\right\rfloor-3\right\}$ as $f\left(v_{1}\right)=0, f\left(v_{n}\right)=2 n-3, f\left(u_{i}\right)=4 i, f\left(w_{i}\right)=4 i-3$, $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
\left\lfloor\frac{4 i-3}{2}\right\rfloor, 2 \leq i \leq n-1, i \text { is even. } \\
\left\lfloor\frac{4 i-5}{2}\right\rfloor, 2 \leq i \leq n-1, i \text { is odd. }
\end{array}\right.
$$

Injectivity for edge labels for subcase 1:

$f^{*}\left(e_{1}\right)=4$ is the smallest edge label and $f^{*}\left(e_{n-1}\right)=(4 n-8)^{2}$ is the highest edge label among all the labelings in $\left.D A\left(T_{n}\right)\right)$. For the injectivity of the remaining edge labels, we apply the similar arguments as per the subcase 1 of case 1 .

Subcase 2: n is odd.
For this subcase, the graph is isomorphic to the graph in subcase 2 of case 1 . So $f^{*}: E\left(D A\left(T_{n}\right)\right) \rightarrow \mathbb{N}$ is injective. Hence $D A\left(T_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.

The below illustration provides better idea of defined labeling pattern in above theorem.

Figure 4. Sum perfect square labeling of $D A\left(T_{6}\right)$.

Theorem 2.5. $A\left(Q_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.

Proof. Case 1 : Quadrilateral starts from v_{1}.
$V\left(A\left(Q_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor}\right\},\left\{w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively such that u_{i} is adjacent with w_{i} and $v_{2 i-1}, w_{i}$ is adjacent with u_{i} and $v_{2 i}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor . E\left(A\left(Q_{n}\right)\right)=$ $\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i-1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(2)}=u_{i} w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(3)}=w_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Here $\left|V\left(A\left(Q_{n}\right)\right)\right|=n+2\left\lfloor\frac{n}{2}\right\rfloor,\left|E\left(A\left(Q_{n}\right)\right)\right|=n-1+3\left\lfloor\frac{n}{2}\right\rfloor$. We define a bijection $f: V\left(A\left(Q_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+2\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ as $f\left(u_{i}\right)=n+2 i-2$ and $f\left(w_{i}\right)=n+2 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Subcase 1: n is even.
$f\left(v_{i}\right)=i-1,1 \leq i \leq n$.
Subcase 2: n is odd.
$f\left(v_{i}\right)=i, 1 \leq i \leq n-1, f\left(v_{n}\right)=0$.
Let $f^{*}: E\left(A\left(Q_{n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$, $\forall u v \in E\left(A\left(Q_{n}\right)\right)$.

Injectivity for edge labels for subcase 1:

For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(j)}\right)$ are also increasing, $1 \leq j \leq 3,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Claim: $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
We have $f^{*}\left(e_{i}\right)=(2 i-1)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(n+4 i-4)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(2 n+4 i-3)^{2}, f^{*}\left(e_{i}^{(3)}\right)=(n+4 i-2)^{2}$. As $f^{*}\left(e_{i}\right)$ and $f^{*}\left(e_{i}^{(2)}\right)$ are odd and $f^{*}\left(e_{i}^{(j)}\right), j=1,3$ are even, it is enough to prove the following.
(1) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(2) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 2 i-1=2 n+4 i-3$ or $2 i-1=3-2 n-4 i$.
$\Longrightarrow 2 i=2-2 n$ or $6 i=4-2 n$.
$\Longrightarrow i=1-n$ or $i=\frac{4-2 n}{6}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow n+4 i-4=n+4 i-2$ or $n+4 i-4=2-n-4 i$.
$\Longrightarrow-4=-2$ or $8 i=6-2 n$.
$\Longrightarrow 4=2$ or $i=\frac{6-2 n}{8}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.

Injectivity for edge labels for subcase 2:

For $1 \leq i \leq n-2, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-3$. Similarly $f^{*}\left(e_{i}^{(j)}\right)$ are also increasing, $1 \leq j \leq 3,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Claim: $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-2\right\} \neq f^{*}\left(e_{n-1}\right) \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
We have $f^{*}\left(e_{i}\right)=(2 i+1)^{2}, f^{*}\left(e_{n-1}\right)=(n-1)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(n+4 i-3)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(2 n+4 i-3)^{2}, f^{*}\left(e_{i}^{(3)}\right)=(n+4 i-1)^{2}$. As $f^{*}\left(e_{i}\right)$ and $f^{*}\left(e_{i}^{(2)}\right)$ are odd and $f^{*}\left(e_{i}^{(j)}\right), j=1,3$ are even, it is enough to prove the following.
(1) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(2) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq f^{*}\left(e_{n-1}\right)$.

Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
\Longrightarrow The highest edge label of $f^{*} e_{i}$ is $(2 n-3)^{2}$ and smallest edge label of $f^{*}\left(e_{i}^{(2)}\right)$ is $(2 n+1)^{2}$, which is larger than the largest edge label of $f^{*} e_{i}$. It is clear that the smallest edge label of $f^{*}\left(e_{i}^{(j)}\right), j=1,2$ is larger than the value of $f^{*}\left(e_{n-1}\right)$. Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow n+4 i-3=n+4 i-1$ or $n+4 i-3=1-n-4 i$.
$\Longrightarrow-3=-1$ or $8 i=4-2 n$.
$\Longrightarrow 4=2$ or $i=\frac{4-2 n}{8}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Case 2: Quadrilateral starts from v_{2}.
Subcase 1: n is even.
$V\left(A\left(Q_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively such that u_{i} is adjacent with w_{i} and $v_{2 i}, w_{i}$ is adjacent with u_{i} and $v_{2 i+1}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 . E\left(A\left(Q_{n}\right)\right)=\left\{e_{i}=\right.$ $\left.v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{e_{i}^{(2)}=u_{i} w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{e_{i}^{(3)}=w_{i} v_{2 i+1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. Note that $\left|V\left(A\left(Q_{n}\right)\right)\right|=n+2\left\lfloor\frac{n}{2}\right\rfloor-2,\left|E\left(A\left(Q_{n}\right)\right)\right|=\frac{5 n-8}{2}$. We define a bijection $f: V\left(A\left(Q_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+2\left\lfloor\frac{n}{2}\right\rfloor-3\right\}$ as $f\left(v_{1}\right)=0, f\left(v_{n}\right)=2 n-3, f\left(v_{i}\right)=i-1,2 \leq i \leq n-1 . f\left(u_{i}\right)=n+2 i-2$ and $f\left(w_{i}\right)=n+2 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.

Injectivity for edge labels for subcase 1:

$f^{*}\left(e_{1}\right)=1$ is the smallest edge label and $f^{*}\left(e_{n-1}\right)=(3 n-5)^{2}$ is the highest edge label among all the labelings in $A\left(Q_{n}\right)$. For the injectivity of the remaining edge labels, we apply the similar arguments as per the subcase 1 of case 1 .

Subcase 2: n is odd.
Here the graph is isomorphic to the graph in subcase 2 of case 1 . So $f^{*}: E\left(A\left(Q_{n}\right)\right) \rightarrow \mathbb{N}$ is injective. Hence $A\left(Q_{n}\right)$ are sum perfect square graphs, $\forall n, n \in \mathbb{N}$.

The below illustration with figure provides the exact idea of defined labeling pattern in this theorem.

Figure 5. Sum perfect square labeling of $A\left(Q_{6}\right)$.

Theorem 2.6. $D A\left(Q_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.
Proof. Case 1: Quadrilaterals start from v_{1}.
$V\left(D A\left(Q_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{u_{i}^{\prime} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{w_{i}^{\prime} ; 1 \leq i \leq\right.$
$\left.\left\lfloor\frac{n}{2}\right\rfloor\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor}\right\},\left\{w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively, such that u_{i} is adjacent with w_{i} and $v_{2 i-1}$. Similarly $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor}^{\prime}$, are the vertices arranged between two consecutive vertices of P_{n} alternatively, such that u_{i}^{\prime} is adjacent with w_{i}^{\prime} and $v_{2 i}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Moreover w_{i}^{\prime} and w_{i} is adjacent with $v_{2 i}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor . E\left(D A\left(Q_{n}\right)\right)=$ $\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i-1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(2)}=u_{i} w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(3)}=w_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup$ $\left\{e_{i}^{(4)}=w_{i}^{\prime} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(5)}=u_{i}^{\prime} w_{i}^{\prime} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{e_{i}^{(6)}=u_{i}^{\prime} v_{2 i-1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Here $\left|V\left(D A\left(Q_{n}\right)\right)\right|=n+4\left\lfloor\frac{n}{2}\right\rfloor$, $\left|E\left(D A\left(T_{n}\right)\right)\right|=n-1+6\left\lfloor\frac{n}{2}\right\rfloor$. We define a bijection $f: V\left(D A\left(Q_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+4\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ as follows.

Subcase 1: n is even.

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{l}
3 i-3 ; 1 \leq i \leq n, i \text { is even. } \\
3 i-1 ; 1 \leq i \leq n, i \text { is odd. }
\end{array}\right. \\
& f\left(u_{i}\right)=6 i-6, f\left(w_{i}\right)=6 i-5, f\left(u_{i}^{\prime}\right)=6 i-2, f\left(w_{i}^{\prime}\right)=6 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

Subcase 2: n is odd.

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
3 i-3 ; 1 \leq i \leq n-1, i \text { is even. } \\
3 i-1 ; 1 \leq i \leq n-1, i \text { is odd. }
\end{array}\right.
$$

$f\left(v_{n}\right)=n+4\left\lfloor\frac{n}{2}\right\rfloor-2, f\left(u_{i}\right)=6 i-6, f\left(w_{i}\right)=6 i-5, f\left(u_{i}^{\prime}\right)=6 i-2,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $f\left(w_{i}^{\prime}\right)=6 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, $f\left(w_{\left\lfloor\frac{n}{2}\right\rfloor}^{\prime}\right)=n+4\left\lfloor\frac{n}{2}\right\rfloor-1$. Let $f^{*}: E\left(D A\left(Q_{n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+$ $(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E\left(D A\left(Q_{n}\right)\right)$.
Injectivity for edge labels for subcase 1:
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)$ is increasing in terms of $i \Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-2$. Similarly $f^{*}\left(e_{i}^{(j)}\right)$ are also increasing, $1 \leq j \leq 6,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Claim: $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq$ $\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(5)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
We have $f^{*}\left(e_{i}\right)=(6 i-1)^{2}, f^{*}\left(e_{i}^{(1)}\right)=(12 i-10)^{2}, f^{*}\left(e_{i}^{(2)}\right)=(12 i-11)^{2}, f^{*}\left(e_{i}^{(3)}\right)=(12 i-8)^{2}, f^{*}\left(e_{i}^{(4)}\right)=(12 i-4)^{2}$, $f^{*}\left(e_{i}^{(5)}\right)=(12 i-3)^{2}, f^{*}\left(e_{i}^{(6)}\right)=(12 i-6)^{2}$. As $f^{*}\left(e_{i}\right), f^{*}\left(e_{i}^{(2)}\right), f^{*}\left(e_{i}^{(5)}\right)$ are odd and $f^{*}\left(e_{i}^{(j)}\right), j=1,3,4,6$ are even, it is enough to prove the following.
(1) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(2) $\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(5)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(3) $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\} \neq\left\{f^{*}\left(e_{i}^{(5)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(4) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(5) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(6) $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(7) $\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(8) $\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
(9) $\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \neq\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 6 i-1=12 i-11$ or $6 i-1=11-12 i$.
$\Longrightarrow 6 i=10$ or $18 i=12$.
$\Longrightarrow i=\frac{5}{3}$ or $i=\frac{2}{3}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(2)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(5)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-11=12 i-3$ or $12 i-11=3-12 i$.
$\Longrightarrow-11=-3$ or $24 i=14$.
$\Longrightarrow 11=3$ or $i=\frac{7}{12}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}\right), 1 \leq i \leq n-1\right\}=\left\{f^{*}\left(e_{i}^{(5)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 6 i-1=12 i-3$ or $6 i-1=3-12 i$.
$\Longrightarrow 6 i=2$ or $18 i=4$.
$\Longrightarrow i=\frac{1}{3}$ or $i=\frac{2}{9}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-10=12 i-8$ or $12 i-10=8-12 i$.
$\Longrightarrow-10=-8$ or $24 i=18$.
$\Longrightarrow 10=8$ or $i=\frac{3}{4}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-10=12 i-4$ or $12 i-10=4-12 i$.
$\Longrightarrow-10=-4$ or $24 i=14$.
$\Longrightarrow 10=4$ or $i=\frac{7}{12}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(1)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-10=12 i-6$ or $12 i-10=6-12 i$.
$\Longrightarrow-10=-6$ or $24 i=16$.
$\Longrightarrow 10=6$ or $i=\frac{2}{3}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-8=12 i-4$ or $12 i-8=4-12 i$.
$\Longrightarrow-8=-4$ or $24 i=12$.
$\Longrightarrow 8=4$ or $i=\frac{1}{2}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(3)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-8=12 i-6$ or $12 i-8=6-12 i$.
$\Longrightarrow-8=-6$ or $24 i=14$.
$\Longrightarrow 8=6$ or $i=\frac{7}{12}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.
Assume if possible $\left\{f^{*}\left(e_{i}^{(4)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}=\left\{f^{*}\left(e_{i}^{(6)}\right), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$, for some i.
$\Longrightarrow 12 i-4=12 i-6$ or $12 i-4=6-12 i$.
$\Longrightarrow-4=-6$ or $24 i=10$.
$\Longrightarrow 4=6$ or $i=\frac{5}{12}$, which contradicts with the choice of i, as $i \in \mathbb{N}$.

Injectivity for edge labels for subcase 2:

The change in this case is only due to edges $e_{n-1}, e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(4)}$ and $e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(5)} . f^{*}\left(e_{n-1}\right)=(6 n-10)^{2}, f^{*}\left(e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(4)}\right)=(6 n-9)^{2}$, and $f^{*}\left(e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(5)}\right)=(6 n-8)^{2}$, which are the first three highest edge labels in their respective ascending order. So by applying the similar arguments, which we have applied in subcase 1 , we get all the edge labels are distinct.

Case 2: Quadrilaterals start from v_{2}.

Subcase 1 : n is even.
$V\left(D A\left(Q_{n}\right)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{u_{i}^{\prime} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{w_{i}^{\prime} ; 1 \leq\right.$ $\left.i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are successive vertices of P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\},\left\{w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right\}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively such that u_{i} is adjacent with w_{i} and $v_{2 i}$. Similarly $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{\prime}$ are the vertices arranged between two consecutive vertices of P_{n} alternatively such that u_{i}^{\prime} is adjacent with w_{i}^{\prime} and $v_{2 i}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$. Moreover w_{i}^{\prime} and w_{i} is adjacent with $v_{2 i+1}, 1 \leq i \leq$ $\left\lfloor\frac{n}{2}\right\rfloor-1 . E\left(D A\left(Q_{n}\right)\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(1)}=u_{i} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{e_{i}^{(2)}=u_{i} w_{i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup$ $\left\{e_{i}^{(3)}=w_{i} v_{2 i+1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{e_{i}^{(4)}=w_{i}^{\prime} v_{2 i+1} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup$ $\left\{e_{i}^{(5)}=u_{i}^{\prime} w_{i}^{\prime} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} \cup\left\{e_{i}^{(6)}=u_{i}^{\prime} v_{2 i} ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. Note that $\left|V\left(D A\left(Q_{n}\right)\right)\right|=n+4\left\lfloor\frac{n}{2}\right\rfloor-4,\left|E\left(D A\left(Q_{n}\right)\right)\right|=$ $n-7+6\left\lfloor\frac{n}{2}\right\rfloor$. We define a bijection $f: V\left(D A\left(Q_{n}\right)\right) \rightarrow\left\{0,1,2, \ldots, n+4\left\lfloor\frac{n}{2}\right\rfloor-5\right\}$ as follows.

$$
\begin{aligned}
& f\left(v_{1}\right)=3 n-7, f\left(v_{n}\right)=3 n-6, f\left(v_{n-1}\right)=3 n-5 . \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
3 i-4 ; 2 \leq i \leq n-2, i \text { is even. } \\
3 i-6 ; 2 \leq i \leq n-2, i \text { is odd. }
\end{array}\right. \\
& f\left(u_{i}\right)=6 i-6 \text { and } f\left(u_{i}^{\prime}\right)=6 i-2,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 . \\
& f\left(w_{i}\right)=6 i-5,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2, f\left(w_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right)=3 n-9 . \\
& f\left(w_{i}^{\prime}\right)=6 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2, f\left(w_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{\prime}\right)=3 n-11 .
\end{aligned}
$$

Injectivity for edge labels for subcase 1:

The change in this case is only due to edges $e_{1}, e_{n-1}, e_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{(2)}, e_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{(3)}, e_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{(4)}$ and $e_{\left\lfloor\frac{n}{2}\right\rfloor-1}^{(5)}$. $f^{*}\left(e_{1}\right)=(6 n-5)^{2}, f^{*}\left(e_{n-1}\right)=(6 n-11)^{2}, f^{*}\left(e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(2)}\right)=(6 n-2)^{2}, f^{*}\left(e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(3)}\right)=(6 n-14)^{2}, f^{*}\left(e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(4)}\right)=(6 n-16)^{2}$ and $f^{*}\left(e_{\left\lfloor\frac{n}{2}\right\rfloor}^{(5)}\right)=(6 n-19)^{2}$, which are unique edge labels in $D A\left(Q_{n}\right)$. For the rest of the edge labels, we apply the similar arguments as provided in subcase 1 of case 1 .

Subcase 2: n is odd.
Here we use the similar labeling pattern as defined in subcase 2 of case 1. So $f^{*}: E\left(D A\left(Q_{n}\right)\right) \rightarrow \mathbb{N}$ is injective. Hence $D A\left(Q_{n}\right)$ are sum perfect square graphs, $\forall n \in \mathbb{N}$.

The below illustration provides better idea of defined labeling pattern in above theorem.

Figure 6. Sum perfect square labeling of $D A\left(Q_{8}\right)$.

References

[^1][3] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference Cordial Labeling of Subdivision of Snake Graphs, Universal Journal of Applied Mathematics, 2(2014), 40-45.
[4] R.Ponraj and S.Sathish Narayanan, Mean cordiality of some snake graphs, Palestine Journal of Mathematics, 4(2015), 439-445.
[5] S.G.Sonchhatra and G.V.Ghodasara, Sum Perfect Square Labeling of Graphs, International Journal of Scientific and Innovative Mathematical Research, 4(2016), 64-70.
[6] S.S.Sandhya, S.Somasundaram and R.Ponraj, Harmonic Mean Labeling of Some Cycle Related Graphs, International Journal of Mathematical Analysis, 6(2012), 1997-2005.

[^0]: * E-mail: sonchhabdasunil.20@mail.com

[^1]: [1] F.Harary, Graph theory, Addision-wesley, Reading, MA, (1969).
 [2] J.A.Gallian, A dynemic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015), 1-262.

