Volume 4, Issue 3-A (2016), 181-184.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Balanced Mean Cordial Labeling and Graph Operations

Research Article

V.J.Kaneria¹, M.J.Khoda^{2*} and H.M.Karavadiya²

- 1 Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India.
- 2 Department of Mathematics, VVP Engineering College, Virda Vajadi, Rajkot, Gujarat, India.

Abstract: Balanced mean cordial labeling is a mean cordial labeling f with $|v_f(i) - v_f(j)| = 0$, $|e_f(i) - e_f(j)| = 0$, $\forall i, j \in \{0, 1, 2\}$. In this paper, we investigate mean cordial labeling for $P(t \cdot H)$, where H be any graph and $t \equiv 0 \pmod{3}$. We also investigate balanced mean cordial labeling for $P(t \cdot H)$, $P_t \times P_t \times P_t$

Keywords: Path Union, Mean Cordial, Balanced mean cordial.

© JS Publication.

1. Introduction

Mean cordial labeling of a graph defined by Ponraj etal.[4] and they investigated mean cordial labeling for P_n , C_n , $K_{1,n}$, K_n , W_n , $P_n \cup P_m$, P_n^2 and triangular snake. Balanced mean cordial graph, which is a mean cordial graph with additional condition $|v_f(i) - v_f(j)| = |e_f(i) - e_f(j)| = 0 \ \forall i, j \in \{0, 1, 2\}$. Path union of a graph G obtained by t copies $G^{(1)}$, $G^{(2)}$,..., $G^{(t)}$ of the graph G and it is denoted by $P(t \cdot G)$. It is obtained by joining a vertex v of $G^{(i)}$ with same vertex of $G^{(i+1)}$ by an edge, $\forall i = 1, 2, ..., t-1$. It is obvious that $P(t \cdot G)$ can be obtained by |V(G)| different ways and $P(t \cdot k_1) = P_t$. Star of a graph G is denoted by G^* and is obtain by p+1 copies $G^{(0)}$, $G^{(1)}$,..., $G^{(p)}$ of a graph G with $V(G) = \{v_1, v_2, \cdots v_p\}$. It is obtained by joining each vertex v_i of $G^{(0)}$ with the corresponding vertex v_i of $G^{(i)}$, $\forall i = 1, 2, ..., p$. We call $G^{(0)}$ as central copy of G^* .

It is obvious that $K_1^*=K_2$, $K_2^*=P_6$. Let G be a graph and $G^{(1)}$, $G^{(2)}$,..., $G^{(t)}$ ($t \ge 2$) be t copies of G. Then the graph obtained by joining a triplet of distinct vertices say u, v, w of $G^{(i)}$ with same vertices of the graph $G^{(i+1)}$ by three distinct edges, $\forall i = 1, 2, ..., t-1$ is called triple path union of t copies of the graph G, such graph we obtain by pC_3 different ways, where p=|V(G)|. We denote such graph by $TP(t\cdot G)$ and it is obvious that $TP(t\cdot P_3)=P_t\times P_3$, $TP(t\cdot C_3)=P_t\times C_3$.

All graphs in this paper are finite, undirected. The vertex set of graph G and the edge set of G are denoted by V(G) and E(G) respectively. Take p = |V(G)| and q = |E(G)|. Terminology not defined here are used in the sense of Harary [2]. Double path union of a graph G defined by kaneria, Teraiya and meera [3] and proved that $D(n \cdot K_{r,s})$, $D(n \cdot P_m)$, $D(n \cdot C_m)$ $(m \equiv 0 \pmod{4})$ are α -graceful graphs.

^{*} E-mail: mjkmaths@gmail.com

2. Main Results

Theorem 2.1. Path union of t copies of a graph H is a mean cordial, where $t \equiv 0 \pmod{3}$.

Proof. Let H be a graph with p = |V(H)|, q = |E(H)|. Let t = 3s for some $s \in \mathbb{N}$. Let $V(H) = \{v_1, v_2, \dots, v_p\}$ and $G = P(t \cdot G)$. Take $V(G) = \{v_{i,1}, v_{i,2}, \dots, v_{i,p} \mid i=1,2,\dots,t\}$. For each $i=1,2,\dots,t-1$, join $v_{i,k}$ with $v_{i+1,k}$ by an edge to form $P(t \cdot G)$, for some $k \in \{1,2,\dots,p\}$. Define vertex labeling function $f:V(G) \longrightarrow \{0,1,2\}$ as follows.

$$f(v_{i,j}) = 2 ; if 1 \le i \le s$$

= 1; if s+1 \le i \le 2s
= 0; if 2s+1 \le i \le 3s, \forall j=1,2,\cdots,p.

It is obvious to that $v_f(2)=v_f(1)=v_f(0)=sp$, $e_f(2)=s(q+1)=e_f(1)$, $e_f(0)=sq+s-1$ in $P(t\cdot H)$. Because for each $(v_{i,k}, v_{i+1,k}) \in E(G)$,

$$f^*((v_{i,k}) + f(v_{i+1,k})) = \lceil \frac{f(v_{i,k}) + f(v_{i+1,k})}{2} \rceil$$

$$= 2 ; \text{ if } 1 \le i \le s$$

$$= 1 ; \text{ if } s + 1 \le i \le 2s$$

$$= 0 ; \text{ if } 2s + 1 \le i \le 3s - 1$$

Thus, above defined labeling function f give rise a mean cordial labeling to the graph G and so, it is a mean cordial graph. \Box

Theorem 2.2. Let H be a balanced mean cordial graph and $f:V(H) \longrightarrow \{0, 1, 2\}$ be a balanced mean cordial labeling for H. Let $u, v, w \in V(H)$ be such that f(u)=2, f(v)=1 and f(w)=0. Then the triple path union of t copies of H obtained by joining the triplet u, v, w in H is also balanced mean cordial graph.

Proof. Let V(H)={v₁, v₂, ... v_p}, where p = |V(H)|. Let $f:V(H) \longrightarrow \{0, 1, 2\}$ be a balanced mean cordial labeling for H. Let $u, v, w \in V(H)$ be such that f(u)=2, f(v)=1, f(w)=0. Let $G=TP(t\cdot H)$ and $V(H^{(i)})=\{v_j^{(i)}/1 \leq j \leq p\}$ the set of vertices of i^{th} copy of H in $TP(t\cdot H)$. Now join vertices $u^{(i)}, v^{(i)}, w^{(i)}$ of $H^{(i)}$ with $u^{(i+1)}, v^{(i+1)}, w^{(i+1)}$ respectively by three distinct edges , \forall i=1, 2. ... t-1. It is obvious that $V(G)=\bigcup_{i=1}^{t}V(H^{(i)})$ and $E(G)=\bigcup_{i=1}^{t}E(H^{(i)})\cup\{(u^{(i)},u^{(i+1)}),(v^{(i)},v^{(i+1)}),(v^{(i)},v^{(i+1)}),(v^{(i)},v^{(i+1)})\}$ and $E(G)=\bigcup_{i=1}^{t}E(H^{(i)})\cup\{(u^{(i)},u^{(i+1)}),(v^{(i)},v^{(i+1)}),(v^{(i)},v^{(i+1)}),(v^{(i)},v^{(i+1)})\}$ by $g(v_j^{(i)})=f(v_j), \forall j=1,2,...$ p, \forall i=1,2,... t. It is observed that $v_f(2)=v_f(1)=v_f(0)=\frac{p}{3}$, $e_f(2)=e_f(1)=e_f(0)=\frac{q}{3}$, as f is a balanced cordial labeling function for H . Therefore, $v_g(2)=v_g(1)=v_g(0)=\frac{tp}{3}$, $e_g(2)=e_g(1)=e_g(0)=\frac{tq}{3}+(t-1)$. Because for each i=1, 2, ..., t-1. $g((u^{(i)},u^{(i+1)})=2,g((v^{(i)},v^{(i+1)})=1,g((w^{(i)},w^{(i+1)})=0)$. Thus, above defined labeling pattern g give rise a balanced mean cordial labeling to the graph $TP(t\cdot H)$ and so, it is balanced mean cordial.

Theorem 2.3. Let G be a balanced mean cordial graph and $f:V(G) \longrightarrow \{0, 1, 2\}$ be a balanced mean cordial labeling for G. Then G^* is also a balanced mean cordial graph.

Proof. Let $V(G) = \{v_1, v_2, \dots v_p\}$ and $f:V(G) \longrightarrow \{0, 1, 2\}$ be a balanced mean cordial labeling for G. $V(G^{(i)}) = \{v_j^{(i)}/1 \le j \le p\}$ be the vertex set of i^{th} copy of G in G^* , $0 \le i \le p$. Now join each vertex $v_i^{(0)}$ of $G_i^{(0)}$ with the corresponding vertex $v_i^{(i)}$ of $G_i^{(i)}$ by an edge, $\forall i = 1, 2, \dots, p$ to form G^* . It is obvious that $V(G^*) = \bigcup_{i=0}^t V(G^{(i)}) = \{v_j^{(i)}/0 \le j \le p, 1 \le i \le p\}$ and $E(G^*) = \bigcup_{i=0}^p E(G) \cup \{(u_i^{(0)}, u_i^{(i)})/i = 1, 2, \dots, p\}$. Define a vertex labeling function $g: V(G^*) \longrightarrow \{0, 1, 2\}$ by $g(v_j^{(i)}) = f(v_j)$, $\forall j = 1, 2, \dots, p, \forall i = 1, 2, \dots, p$. Above defined labeling pattern g give rise $v_g(2) = v_g(1) = v_g(0) = \frac{(p+1)p}{3}$ and $e_g(2) = e_g(1) = e_g(0) = \frac{(p+1)q}{3} + \frac{p}{3}$, as for each $i = 1, 2, \dots, p$, $g^*((u_i^{(0)}, u_i^{(i)})) = f(u_i)$. Thus, g^* is a balanced mean cordial graph.

Theorem 2.4. Let G be a balanced mean cordial graph and f be a balanced mean cordial labeling for G. Then $P_t \times G$ is also a balanced mean cordial graph.

Proof. Let G, V(G) and f are same as discussed in the Theorem 2.3. Now join each vertex $v_j^{(i)}$ of $G^{(i)}$ with corresponding vertex $v_j^{(i+1)}$ of $G^{(i+1)}$ by an edge, $\forall i=1,2,\ldots,t-1, \ \forall \ j=1,2,\ldots,p$ to form $P_t\times G$, where $G^{(i)}$ is the i^{th} copy of graph G. Take $V(P_t\times G)=\bigcup_{i=1}^t V(G^{(i)})=\{v_j^{(i)}\ /\ 1\leq j\leq p,\ 1\leq i\leq t\}$ and $E(P_t\times G)=\bigcup_{i=1}^t E(G^{(i)})\cup\{(v_j^{(i)},v_j^{(i+1)})/i=1,\ 2,\ldots,t-1,\ j=1,2,\ldots,p\}$. Define a vertex labeling function $g:V(P_t\times G)\longrightarrow\{0,\ 1,\ 2\}$ by $g(v_j^{(i)})=f(v_j), \ \forall\ j=1,\ 2,\ldots,p,\forall\ i=1,\ 2,\ldots,t-1,\ j=1,\ 2,\ldots,p,g^*((v_j^{(i)},v_j^{(i+1)}))=f(v_j),$ Thus, $P_t\times G$ is a balanced mean cordial. \square

Illustration 2.5. A balanced mean cordial graph G, and its balanced mean cordial labeling and balanced mean cordial labeling for $P_4 \times G$ are shown in

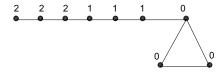


Figure 1. A balanced mean cordial labeling of graph G

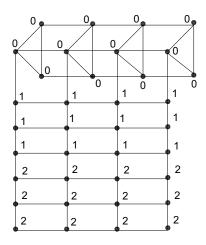


Figure 2. Balanced mean cordial labeling for $p_4 \times G$

Theorem 2.6. If G is a balanced mean cordial graph and f is a balanced mean cordial labeling for G, then so is $C_t \times G$.

Proof. Let G, V(G), f, V($G^{(i)}$) are same as discussed in the Theorem 2.3. It is obvious that V(C_t × G)=V(P_t × G), E(C_t × G)=E(P_t × G) $\cup \{(v_j^{(t)}, v_j^{(1)})/j=1, 2, ..., p\}$. If we define a vertex labeling function on V(C_t × G), as it is already defined in Theorem 2.4 on V(P_t × G), then such labeling function g give rise to $v_g(2)=v_g(1)=v_g(0)=\frac{tp}{3}$ and $e_g(2)=e_g(1)=e_g(0)=\frac{t(p+q)}{3}$. Thus, C_t × G is a balanced mean cordial graph.

References

^[1] J.A.Gallian, A dynamic survey of graph labeling, The electronics J. of combin., 18(2011), #DS6.

^[2] F.Harry, Graph Theory, Addision wesley, New Delhi, (1972).

^[3] V.J.Kaneria, Om Teraiya and Meera Meghpara, Double path union of α -graceful graphs with its α -labeling, Journal of Graph labeling, 2(2)(2016), 107-114.

[4] R.Ponraj, M.Sivkumar and M.Sundaram, $Mean\ cordial\ labeling\ of\ graphs,$ Open journal of Discrete Mathematics, $2(4)(2012),\ 145-148.$