

International Journal of Mathematics And its Applications

Generalization of Common Coupled Fixed Point Theorems in Complex Valued b-Metric Spaces

Research Article

A.K.Dubey¹*

1 Department of Mathematics, Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh, India.

$\mathbf{Abstract}:$	Recently, Azam et al. [1] introduced the complex valued metric space and obtained sufficient conditions for the existence of common fixed points. Rao et al. [20] introduce the notion of complex valued b-metric spaces. In this paper, some common coupled fixed point theorems have been established for a pair of mappings in a complete complex valued b-metric space in view of diverse contractive conditions. Our results extend and improve several fixed point theorems in the literature.
MSC:	47H10, 54H25.
Keywords:	Common fixed point, Coupled fixed point, Complete complex valued b-metric space, Complex-valued metric spaces.
	© JS Publication.

1. Introduction and Preliminaries

The Banach fixed point theorem [6] is the first important result in fixed point theory. There are a lot of generalizations of the Banach contraction mapping principle in the literature. The concept of b-metric space was introduced by Bakhtin [5] and Czerwik [9]. They proved the contraction mapping principle in b-metric spaces that generalized the famous Banach contraction mapping principle in metric spaces.

Azam et al. [1] first introduced the concept of complex valued metric spaces and proved some common fixed point theorems for a pair of contractive type mappings satisfying a rational inequality. Many authors have been studied several fixed point and common fixed point results for two maps satisfying rational inequality in the context of complex valued-metric spaces [7, 13, 19, 21, 22].

In 2013, Rao et al. [20] introduced the notion of complex valued b-metric space which was more general than the well known complex valued metric spaces [1]. In sequel, AA.Mukheimer [16] proved some common fixed point theorems of two self mappings satisfying some contraction condition on complex valued b-metric spaces.

In [8], Bhaskar and Lakshmikantham introduced the concept of coupled fixed points for a given partially ordered set X. Subsequently, Samet et al. [23] proved the most of the coupled fixed point theorems on ordered metric spaces. The purpose of the present paper is to extend and generalize the results of Kutbi et al. [13] and prove the existence and

^{*} E-mail: anilkumardby70@gmail.com

uniqueness of the common coupled fixed point in complete complex valued b-metric space in view of diverse contractive conditions. The results given in this paper substantially extend and strengthen the results given in [1, 10, 11, 13, 16, 20].

The following definitions and results will be needed in the sequel. Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define a partial order \preceq on \mathbb{C} as follows:

 $z_1 \preceq z_2$ if and only if $Re(z_1) \leq Re(z_2), Im(z_1) \leq Im(z_2)$.

Consequently, one can infer that $z_1 \preceq z_2$ if one of the following conditions is satisfied:

- (1). $Re(z_1) = Re(z_2), Im(z_1) < Im(z_2),$
- (2). $Re(z_1) < Re(z_2), Im(z_1) = Im(z_2),$
- (3). $Re(z_1) < Re(z_2), Im(z_1) < Im(z_2),$
- (4). $Re(z_1) = Re(z_2), Im(z_1) = Im(z_2).$

In particular, we write $z_1 \neq z_2$ if $z_1 \neq z_2$ and one of (1), (2) and (3) is satisfied and we write $z_1 \prec z_2$ if only (3) is satisfied. Notice that

- (1). $0 \preceq z_1 \preceq z_2 \Rightarrow |z_1| < |z_2|,$
- (2). $z_1 \preceq z_2, z_2 \prec z_3 \Rightarrow z_1 \prec z_3$.

Definition 1.1 ([20]). Let X be a nonempty set and let $s \ge 1$ be a given real number. A function $d: X \times X \to \mathbb{C}$ is called a complex valued b-metric on X if for all $x, y, z \in X$ the following conditions are satisfied:

- (1). $0 \preceq d(x, y)$ and d(x, y) = 0 if and only if x = y;
- (2). d(x, y) = d(y, x);
- (3). $d(x,y) \preceq s[d(x,z) + d(z,y)].$

The pair (X, d) is called a complex valued b-metric space.

Example 1.2 ([20]). Let X = [0, 1]. Define the mapping $d : X \times X \to \mathbb{C}$ by $d(x, y) = |x - y|^2 + i|x - y|^2$ for all $x, y \in X$. Then (X, d) is a complex valued b-metric space with s = 2.

Definition 1.3 ([20]). Let (X, d) be a complex valued b-metric space.

- (1). A point $x \in X$ is called interior point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathbb{C}$ such that $B(x,r) = \{y \in X : d(x,y) \prec r\} \subseteq A$, where B(x,r) is an open ball. Then $\overline{B(x,r)} = \{y \in X : d(x,y) \precsim r\}$ is a closed ball.
- (2). A point $x \in X$ is called a limit point of a set A whenever for every $0 \prec r \in \mathbb{C}$, $B(x, r) \cap (A \{x\}) \neq \phi$.
- (3). A subset $A \subseteq X$ is called open set whenever each element of A is an interior point of A.
- (4). A subset $B \subseteq X$ is called closed set whenever each limit point of B belongs to B. The family $F = \{B(x, r) : x \in X, 0 \prec r\}$ is a sub-basis for a Hausdorff topology τ on X.

Definition 1.4 ([20]). Let (X, d) be a complex valued b-metric space, $\{x_n\}$ be a sequence in X and $x \in X$.

- (1). If for every $c \in \mathbb{C}$, with $0 \prec c$ there is $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x) \prec c$, then $\{x_n\}$ is said to be convergent, $\{x_n\}$ converges to x and x is the limit point of $\{x_n\}$. We denote this by $\lim_{n\to\infty} x_n = x$ or $\{x_n\} \to x$ as $n \to \infty$.
- (2). If for every $c \in \mathbb{C}$, with $0 \prec c$ there is $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x_{n+m}) \prec c$, where $m \in \mathbb{N}$, then $\{x_n\}$ is said to be Cauchy sequence.
- (3). If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete complex valued b-metric space.

Lemma 1.5 ([20]). Let (X, d) be a complex valued b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n, x)| \to 0$ as $n \to \infty$.

Lemma 1.6 ([20]). Let (X, d) be a complex valued b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $|d(x_n, x_{n+m})| \to 0$ as $n \to \infty$, where $m \in \mathbb{N}$.

2. Common Coupled Fixed Point Theorems

Theorem 2.1. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let $S, T : X \times X \to X$ are mappings satisfying:

$$d(S(x,y),T(u,v)) \preceq \frac{\propto (d(x,u) + d(y,v))}{2} + \frac{(\beta d(x,S(x,y))d(u,T(u,v)) + \gamma d(u,S(x,y))d(x,T(u,v)))}{(1 + d(x,u) + d(y,v))}$$
(1)

for all $x, y, u, v \in X$ and α, β and γ are nonnegative reals with $s \propto +\beta < 1$ and $\alpha + \gamma < 1$. Then S and T have a unique common coupled fixed point.

Proof. Let x_0 and y_0 be arbitrary points in X. Define

$$x_{2n+1} = S(x_{2n}, y_{2n}), y_{2n+1} = S(y_{2n}, x_{2n}) \text{ and}$$

$$x_{2n+2} = T(x_{2n+1}, y_{2n+1}), y_{2n+2} = T(y_{2n+1}, x_{2n+1})$$
(2)

for $n = 0, 1, 2, \ldots$ Now, we show that the sequences $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X Then,

$$d(x_{2n+1}, x_{2n+2}) = d(S(x_{2n}, y_{2n}), T(x_{2n+1}, y_{2n+1}))$$

$$\lesssim \frac{\propto (d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}))}{2}$$

$$+ \frac{(\beta d(x_{2n}, S(x_{2n}, y_{2n}))d(x_{2n+1}, T(x_{2n+1}, y_{2n+1})) + \gamma d(x_{2n+1}, S(x_{2n}, y_{2n}))d(x_{2n}, T(x_{2n+1}, y_{2n+1})))}{1 + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})}$$

$$\lesssim \frac{\propto (d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}))}{2} + \frac{\beta d(x_{2n}, x_{2n+1}) d(x_{2n+1}, x_{2n+2})}{1 + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})}$$

$$+ \frac{\gamma d(x_{2n+1}, x_{2n+1}) d(x_{2n}, x_{2n+1})}{2} + \frac{\beta d(x_{2n}, x_{2n+1}) d(x_{2n+1}, x_{2n+2})}{1 + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})}$$

$$\lesssim \frac{\propto (d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})}{2} + \frac{\beta d(x_{2n}, x_{2n+1}) d(x_{2n+1}, x_{2n+2})}{1 + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})}$$

$$(3)$$

which implies that

$$|d(x_{2n+1}, x_{2n+2})| \le \frac{\alpha |d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})|}{2} + \frac{\beta |d(x_{2n}, x_{2n+1}) d(x_{2n+1}, x_{2n+2})|}{|1 + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})|}.$$
(4)

Since $|1 + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})| > |d(x_{2n}, x_{2n+1})|$, so we get

$$|d(x_{2n+1}, x_{2n+2})| \le \frac{\alpha |d(x_{2n}, x_{2n+1})| + \alpha |d(y_{2n}, y_{2n+1})|}{2} + \beta |d(x_{2n+1}, x_{2n+2})|$$
(5)

$$|d(x_{2n+1}, x_{2n+2})| \le \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(x_{2n}, x_{2n+1})| + \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(y_{2n}, y_{2n+1})|.$$
(6)

Similarly, one can show that

$$|d(y_{2n+1}, y_{2n+2})| \le \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(y_{2n}, y_{2n+1})| + \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(x_{2n}, x_{2n+1})|.$$

$$\tag{7}$$

Also, $d(x_{2n+2}, x_{2n+3})$

$$= d(T(x_{2n+1}, y_{2n+1}), S(x_{2n+2}, y_{2n+2}))$$

$$\lesssim \frac{\propto (d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}))}{2}$$

$$+ \frac{(\beta d(x_{2n+1}, T(x_{2n+1}, y_{2n+1}))d(x_{2n+2}, S(x_{2n+2}, y_{2n+2})) + \gamma d(x_{2n+2}, T(x_{2n+1}, y_{2n+1}))d(x_{2n+1}, S(x_{2n+2}, y_{2n+2})))}{1 + d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})}$$

$$\lesssim \frac{\propto (d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}))}{2} + \frac{\beta d(x_{2n+1}, x_{2n+2}) d(x_{2n+2}, x_{2n+3})}{1 + d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})}$$

$$+ \frac{\gamma d(x_{2n+2}, x_{2n+2}) d(x_{2n+1}, x_{2n+3})}{1 + d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})}$$

$$\lesssim \frac{\propto (d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})}{2} + \frac{\beta d(x_{2n+1}, x_{2n+2}) d(x_{2n+2}, x_{2n+3})}{1 + d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})}$$
(8)

so that

$$|d(x_{2n+2}, x_{2n+3})| \le \frac{\alpha |d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})|}{2} + \frac{\beta |d(x_{2n+1}, x_{2n+2})| |d(x_{2n+2}, x_{2n+3})|}{|1 + d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})|}.$$
(9)

As $|1 + d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2})| > |d(x_{2n+1}, x_{2n+2})|$, therefore,

$$|d(x_{2n+2}, x_{2n+3})| \le \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(x_{2n+1}, x_{2n+2})| + \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(y_{2n+1}, y_{2n+2})|.$$
(10)

Similarly, one can show that

$$|d(y_{2n+2}, y_{2n+3})| \le \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(y_{2n+1}, y_{2n+2})| + \frac{1}{2} (\frac{\alpha}{1-\beta}) |d(x_{2n+1}, x_{2n+2})|.$$
(11)

Adding up (6) & (7) and (10) & (11) we get

$$|d(x_{2n+1}, x_{2n+2})| + |d(y_{2n+1}, y_{2n+2})| \le \frac{\alpha}{1-\beta} |d(x_{2n}, x_{2n+1})| + \frac{\alpha}{1-\beta} |d(y_{2n}, y_{2n+1})|$$
(12)

$$|d(x_{2n+2}, x_{2n+3})| + |d(y_{2n+2}, y_{2n+3})| \le \frac{\alpha}{1-\beta} |d(x_{2n+1}, x_{2n+2})| + \frac{\alpha}{1-\beta} |d(y_{2n+1}, y_{2n+2})|.$$
(13)

Since $s \propto +\beta < 1$ and $s \ge 1$ we get $\propto +\beta < 1$. Therefore with $h = \frac{\alpha}{1-\beta} < 1$, and for all $n \ge 0$ and consequently, we have

$$|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})| \le h(|d(x_{n-1}, x_n)| + |d(y_{n-1}, y_n)|)$$

$$\le \dots \le h^n(|d(x_0, x_1)| + |d(y_0, y_1)|).$$
(14)

Now if $|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})| = \delta_n$ then

$$\delta_n \le h \delta_{n-1} \le \dots \le h^n \delta_0. \tag{15}$$

Without loss of generality, we take $m > n, m, n \in \mathbb{N}$, and since $0 \le h < 1$, so we get

$$\begin{aligned} |d(x_n, x_m)| + |d(y_n, y_m)| &\leq s(|d(x_n, x_{n+1})| + |d(x_{n+1}, x_m)|) + s(|d(y_n, y_{n+1})| + |d(y_{n+1}, y_m)|) \\ &\leq s(|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})|) + s^2(|d(x_{n+1}, x_{n+2})| + |d(x_{n+2}, x_m)|) \\ &\quad + s^2(|d(y_{n+1}, y_{n+2})| + |d(y_{n+2}, y_m)|) \\ &\leq s(|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})|) + s^2(|d(x_{n+1}, x_{n+2})| + |d(y_{n+1}, y_{n+2})|) \\ &\quad + s^3(|d(x_{n+2}, x_{n+3})| + |d(x_{n+3}, x_m)|) + s^3(|d(y_{n+2}, y_{n+3})| + |d(y_{n+3}, y_m)|) \\ &\qquad \cdots \\ \\ |d(x_n, x_m)| + |d(y_n, y_m)| \leq s(|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})|) + s^2(|d(x_{n+1}, x_{n+2})| + |d(y_{n+1}, y_{n+2})|) \end{aligned}$$

$$+ s^{m-n-1}(|d(x_{m-2}, x_{m-1})| + |d(y_{m-2}, y_{m-1})|) + s^{m-n}(|d(x_{m-1}, x_m)| + |d(y_{m-1}, y_m)|)$$

By using (15), we get

$$\begin{aligned} |d(x_n, x_m)| + |d(y_n, y_m)| &\leq sh^n (|d(x_0, x_1)| + |d(y_0, y_1)|) + s^2 h^{n+1} (|d(x_0, x_1)| + |d(y_0, y_1)|) \\ & \cdots \\ & + s^{m-n-1} h^{m-2} (|d(x_0, x_1)| + |d(y_0, y_1)|) + s^{m-n} h^{m-1} (|d(x_0, x_1)| + |d(y_0, y_1)|) \\ &= sh^n \delta_0 + s^2 h^{n+1} \delta_0 + \cdots + s^{m-n-1} h^{m-2} \delta_0 + s^{m-n} h^{m-1} \delta_0 \\ &= \sum_{i=1}^{m-n} s^i h^{i+n-1} \delta_0. \end{aligned}$$

Therefore,

$$\begin{aligned} |d(x_n, x_m)| + |d(y_n, y_m)| &\leq \sum_{i=1}^{m-n} s^{i+n-1} h^{i+n-1} \delta_0 \\ &= \sum_{t=n}^{m-1} s^t h^t \delta_0 \\ &\leq \sum_{t=n}^{\infty} (sh)^t \delta_0 = \frac{(sh)^n}{1-sh} \delta_0 \end{aligned}$$

and hence

$$|d(x_n, x_m)| + |d(y_n, y_m)| \le \frac{(sh)^n}{1 - sh} \delta_0 \to 0 \text{ as } m, n \to +\infty.$$

This implies that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X. Since X is complete, there exists $x, y \in X$ such that $x_n \to x$ and $y_n \to y$ as $n \to +\infty$. We now show that x = S(x, y) and y = S(y, x). We assume on the contrary that $x \neq S(x, y)$ and $y \neq S(y, x)$ so that $0 \prec d(x, S(x, y)) = u_1$ and $0 \prec d(y, S(y, x)) = u_2$; then we have

$$u_{1} = d(x, S(x, y)) \precsim sd(x, x_{2n+2}) + sd(x_{2n+2}, S(x, y))$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

$$(16)$$

which implies that

$$|u_{1}| \leq s|d(x, x_{2n+2})| + \frac{s \propto |d(x_{2n+1}, x) + d(y_{2n+1}, y)|}{2} + \frac{s\beta |d(x_{2n+1}, x_{2n+2})||d(x, S(x, y))|}{|1 + d(x_{2n+1}, x) + d(y_{2n+1}, y)|} + \frac{s\gamma |d(x, x_{2n+2})||d(x_{2n+1}, S(x, y))|}{|1 + d(x_{2n+1}, x) + d(y_{2n+1}, y)|}.$$
(17)

Taking the limit of (17) as $n \to +\infty$, we obtain |d(x, S(x, y))| = 0, which is a contradiction so that x = S(x, y). Similarly, one can prove that y = S(y, x). It follows similarly that x = T(x, y) and y = T(y, x). Hence (x, y) is a common coupled fixed point of S and T. Now, we show that S and T have a unique common coupled fixed point. For this, assume that $(x^*, y^*) \in X$ is another common coupled fixed point of S and T. Then

$$\begin{aligned} d(x,x^{\star}) &= d(S(x,y),T(x^{\star},y^{\star})) \\ &\lesssim \frac{\propto (d(x,x^{\star}) + d(y,y^{\star}))}{2} + \frac{\beta d(x,S(x,y))d(x^{\star},T(x^{\star},y^{\star}))}{1 + d(x,x^{\star}) + d(y,y^{\star})} + \frac{\gamma d(x,T(x^{\star},y^{\star}))d(x^{\star},S(x,y))}{1 + d(x,x^{\star}) + d(y,y^{\star})}. \\ &\lesssim \frac{\propto (d(x,x^{\star}) + d(y,y^{\star}))}{2} + \frac{\beta d(x,x)d(x^{\star},x^{\star})}{1 + d(x,x^{\star}) + d(y,y^{\star})} + \frac{\gamma d(x,x^{\star})d(x^{\star},x)}{1 + d(x,x^{\star}) + d(y,y^{\star})}. \end{aligned}$$

So that

$$|d(x,x^{\star})| \leq \frac{\alpha |d(x,x^{\star}) + d(y,y^{\star})|}{2} + \frac{\gamma |d(x,x^{\star})| |d(x^{\star},x)|}{|1 + d(x,x^{\star}) + d(y,y^{\star})|}.$$
(18)

Since $|1 + d(x, x^*) + d(y, y^*)| > |d(x, x^*)|$, so we get

$$|d(x,x^{*})| \leq \frac{\alpha |d(x,x^{*}) + d(y,y^{*})|}{2} + \gamma |d(x,x^{*})| = (\frac{\alpha}{2-\alpha-2\gamma})|d(y,y^{*})|.$$
(19)

Similarly, one can easily prove that

$$|d(y,y^{\star})| \le \left(\frac{\alpha}{2-\alpha-2\gamma}\right)|d(x,x^{\star})|.$$

$$(20)$$

Adding up (19) and (20), we get

$$|d(x,x^{\star})| + |d(y,y^{\star})| \le (\frac{\alpha}{2-\alpha-2\gamma})(|d(x,x^{\star})| + |d(y,y^{\star})|)$$

which is a contradiction because $\propto +\gamma < 1$. So $x^* = x$ and $y = y^*$ which proves the uniqueness of common coupled fixed point of S and T. This completes the proof.

Corollary 2.2. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let $T : X \times X \to X$ satisfy

$$d(T(x,y),T(u,v)) \preceq \frac{\propto (d(x,u) + d(y,v))}{2} + \frac{\beta d(x,T(x,y))d(u,T(u,v))}{1 + d(x,u) + d(y,v)} + \frac{\gamma d(u,T(x,y))d(x,T(u,v))}{1 + d(x,u) + d(y,v)}$$
(21)

for all $x, y, u, v \in X$, where α, β and γ are nonnegative reals with $s \propto +\beta < 1$ and $\alpha + \gamma < 1$. Then T has a unique coupled fixed point.

Proof. We can prove this result by applying Theorem 2.1 by setting S = T.

Corollary 2.3. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let $T : X \times X \to X$ satisfy

$$d(T^{n}(x,y),T^{n}(u,v)) \preceq \frac{\propto (d(x,u)+d(y,v))}{2} + \frac{\beta d(x,T^{n}(x,y))d(u,T^{n}(u,v))}{1+d(x,u)+d(y,v)} + \frac{\gamma d(u,T^{n}(x,y))d(x,T^{n}(u,v))}{1+d(x,u)+d(y,v)}$$
(22)

for all $x, y, u, v \in X$, where α, β and γ are nonnegative reals with $s \propto +\beta < 1$ and $\alpha + \gamma < 1$. Then T has a unique coupled fixed point.

Proof. From Corollary 2.2, we obtain $(x, y) \in X \times X$ such that $T^n(x, y) = x$. The uniqueness follows from

$$d(T(x,y),x) = d(T(T^{n}(x,y),y),T^{n}(x,y))$$

$$= d(T^{n}(T(x,y),y),T^{n}(x,y))$$

$$\precsim \frac{\alpha}{2} \frac{\alpha}{2} \frac{(d(T(x,y),x) + d(y,y))}{2} + \frac{\beta d(T(x,y),T^{n}(T(x,y)))d(x,T^{n}(x,y))}{1 + d(T(x,y),x) + d(y,y)} + \frac{\gamma d(x,T^{n}(T(x,y),y))d(T(x,y)T^{n}(x,y))}{1 + d(T(x,y),x) + d(y,y)}$$

$$\precsim \frac{\alpha}{2} \frac{\alpha}{2} \frac{(d(T(x,y),x))}{2} + \frac{\gamma d(x,T(T^{n}(x,y),y))d(T(x,y),x)}{1 + d(T(x,y),x)}$$

$$= \frac{\alpha}{2} \frac{(d(T(x,y),x))}{2} + \frac{\gamma d(x,T(x,y))d(x,T(x,y))}{1 + d(x,T(x,y))}.$$
(23)

By taking modulus of (23) we get

$$|d(T(x,y),x)| \le \frac{\alpha |d(T(x,y),x)|}{2} + \frac{\gamma |d(x,T(x,y))||d(x,T(x,y))|}{|1+d(x,T(x,y))|}.$$

Since |1 + d(x, T(x, y))| > |d(x, T(x, y))|

$$\begin{split} |d(T(x,y),x)| &\leq (\frac{\infty}{2}+\gamma) |d(T(x,y),x)| \\ &< |d(T(x,y),x)|, \quad \text{a contradiction} \end{split}$$

So, T(x, y) = x. Hence $T(x, y) = T^n(x, y) = x$. Similarly, it can be proved,

$$T(y,x) = T^n(y,x) = y.$$

Therefore, the coupled fixed of T is unique. This completes the proof.

Theorem 2.4. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let $S, T : X \times X \to X$ are mappings satisfying:

$$d(S(x,y),T(u,v)) \precsim \begin{cases} \frac{\alpha(d(x,u)+d(y,v))}{2} + \frac{\beta d(x,S(x,y))d(u,T(u,v))}{d(x,T(u,v))+d(u,S(x,y))+d(x,u)+d(y,v)} & \text{if } D \neq 0\\ 0 & \text{if } D = 0 \end{cases}$$
(24)

for all $x, y, u, v \in X$, where D = d(x, T(u, v)) + d(u, S(x, y)) + d(x, u) + d(y, v) and α, β are nonnegative reals with $s(\alpha + \beta) < 1$. Then S and T have a unique common coupled fixed point.

Proof. Let x_0 and y_0 be arbitrary points in X. Define

$$x_{2n+1} = S(x_{2n}, y_{2n}), y_{2n+1} = S(y_{2n}, x_{2n}) \text{ and}$$

$$x_{2n+2} = T(x_{2n+1}, y_{2n+1}), y_{2n+2} = T(y_{2n+1}, x_{2n+1}), \text{ for } n = 0, 1, 2,$$
(25)

Now, we assume that

$$D_{S}(x_{2n}, y_{2n}) = d(S(x_{2n}, y_{2n}), T(x_{2n+1}, y_{2n+1}))$$

$$= d(x_{2n}, T(x_{2n+1}, y_{2n+1})) + d(x_{2n+1}, S(x_{2n}, y_{2n})) + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})$$

$$= d(x_{2n}, x_{2n+2}) + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) \neq 0,$$

$$D_{S}(y_{2n}, x_{2n}) = d(S(y_{2n}, x_{2n}), T(y_{2n+1}, x_{2n+1}))$$

$$= d(y_{2n}, T(y_{2n+1}, x_{2n+1})) + d(y_{2n+1}, S(y_{2n}, x_{2n})) + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})$$

$$= d(y_{2n}, y_{2n+2}) + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) \neq 0.$$

191

Then

$$d(x_{2n+1}, x_{2n+2}) = d(S(x_{2n}, y_{2n}), T(x_{2n+1}, y_{2n+1}))$$

$$\lesssim \frac{\alpha \left(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) \right)}{2} + \frac{\beta d(x_{2n}, S(x_{2n}, y_{2n})) d(x_{2n+1}, T(x_{2n+1}, y_{2n+1}))}{D_S(x_{2n}, y_{2n})}$$

$$= \frac{\alpha \left(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) \right)}{2} + \frac{\beta d(x_{2n}, x_{2n+1}) d(x_{2n+1}, x_{2n+2})}{d(x_{2n}, x_{2n+1}) + d(x_{2n}, y_{2n+1})}.$$
(26)

Taking modulus of (26), we get

$$\begin{aligned} |d(x_{2n+1}, x_{2n+2})| &\leq \frac{\alpha |d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})|}{2} + \frac{\beta |d(x_{2n}, x_{2n+1})| |d(x_{2n+1}, x_{2n+2})|}{|d(x_{2n}, x_{2n+2}) + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})|} \\ &\leq \frac{\alpha |d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})|}{2} + \beta |d(x_{2n}, x_{2n+1})|.\end{aligned}$$

As $|d(x_{2n+1}, x_{2n+2})| \le |d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n}) + d(y_{2n}, y_{2n+1})|$. Therefore

$$|d(x_{2n+1}, x_{2n+2})| \le \frac{(\alpha + 2\beta)}{2} |d(x_{2n}, x_{2n+1})| + \frac{\alpha}{2} |d(y_{2n}, y_{2n+1})|.$$
(27)

Similarly, it can be easily proved,

$$|d(y_{2n+1}, y_{2n+2})| \le \frac{(\alpha + 2\beta)}{2} |d(y_{2n}, y_{2n+1})| + \frac{\alpha}{2} |d(x_{2n}, x_{2n+1})|.$$
(28)

Now if

$$D_T(x_{2n+1}, y_{2n+1}) = d(T(x_{2n+1}, y_{2n+1}), S(x_{2n+2}, y_{2n+2}))$$

= $d(x_{2n+2}, T(x_{2n+1}, y_{2n+1})) + d(x_{2n+1}, S(x_{2n+2}, y_{2n+2})) + d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1})$
= $d(x_{2n+1}, x_{2n+3}) + d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1}) \neq 0.$

Then,

$$d(x_{2n+2}, x_{2n+3}) = d(T(x_{2n+1}, y_{2n+1}), S(x_{2n+2}, y_{2n+2}))$$

$$\approx \frac{\alpha (d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1}))}{2} + \frac{\beta d(x_{2n+2}, S(x_{2n+2}, y_{2n+2}))d(x_{2n+1}, T(x_{2n+1}, y_{2n+1}))}{D_T(x_{2n+1}, y_{2n+1})}$$

$$= \frac{\alpha (d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1}))}{2} + \frac{\beta d(x_{2n+2}, x_{2n+3})d(x_{2n+1}, x_{2n+3})}{d(x_{2n+1}, x_{2n+3}) + d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1})}.$$
(29)

Taking modulus of (29), we get

$$\begin{aligned} |d(x_{2n+2}, x_{2n+3})| &\leq \frac{\alpha \left| d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1}) \right|}{2} + \frac{\beta |d(x_{2n+2}, x_{2n+3})| |d(x_{2n+1}, x_{2n+2})|}{|d(x_{2n+2}, x_{2n+3})| + |d(x_{2n+2}, x_{2n+1})| + |d(y_{2n+2}, y_{2n+1})|} \\ &\leq \frac{\alpha \left| d(x_{2n+2}, x_{2n+1}) + d(y_{2n+2}, y_{2n+1}) \right|}{2} + \beta |d(x_{2n+1}, x_{2n+2})|. \end{aligned}$$

As $|d(x_{2n+2}, x_{2n+3})| \le |d(x_{2n+2}, x_{2n+1})| + |d(x_{2n+1}, x_{2n+3})| + |d(y_{2n+2}, y_{2n+1})|$. Therefore

$$|d(x_{2n+2}, x_{2n+3})| \le \frac{(\alpha + 2\beta)}{2} |d(x_{2n+2}, x_{2n+1})| + \frac{\alpha}{2} |d(y_{2n+1}, y_{2n+2})|.$$
(30)

Similarly, if $D_T(y_{2n+1}, x_{2n+1}) \neq 0$ one can easily prove that

$$|d(y_{2n+2}, y_{2n+3})| \le \frac{(\alpha + 2\beta)}{2} |d(y_{2n+1}, y_{2n+2})| + \frac{\alpha}{2} |d(x_{2n+1}, x_{2n+2})|.$$
(31)

Adding up the inequalities (27) with (28) and (30) with (31), we get

$$|d(x_{2n+1}, x_{2n+2})| + |d(y_{2n+1}, y_{2n+2})| \le (\alpha + \beta)(|d(x_{2n}, x_{2n+1})| + |d(y_{2n}, y_{2n+1})|)$$
(32)

$$|d(x_{2n+2}, x_{2n+3})| + |d(y_{2n+2}, y_{2n+3})| \le (\alpha + \beta)(|d(x_{2n+1}, x_{2n+2})| + |d(y_{2n+1}, y_{2n+2})|).$$
(33)

Since $s(\alpha + \beta) < 1$ and $s \ge 1$, we get $\alpha + \beta < 1$. Therefore with $h = (\alpha + \beta) < 1$ and for all $n \ge 0$ and consequently, we get

$$|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})| \le h(|d(x_{n-1}, x_n)| + |d(y_{n-1}, y_n)|) \le \dots \le h^n(|d(x_0, x_1)| + |d(y_0, y_1)|).$$
(34)

Now if $|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})| = \delta_n$, then

$$\delta_n \le h \delta_{n-1} \le \dots \le h^n \delta_0. \tag{35}$$

Without loss of generality, we take $m > n, m, n \in \mathbb{N}$ and since $0 \le h < 1$, so we get

$$\begin{aligned} |d(x_n, x_m)| + |d(y_n, y_m)| &\leq s(|d(x_n, x_{n+1})| + |d(x_{n+1}, x_m)|) + s(|d(y_n, y_{n+1})| + |d(y_{n+1}, y_m)|) \\ &\leq s(|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})|) + s^2(|d(x_{n+1}, x_{n+2})| + |d(x_{n+2}, x_m)|) \\ &+ s^2(|d(y_{n+1}, y_{n+2})| + |d(y_{n+2}, y_m)|) \\ &\cdots \\ |d(x_n, x_m)| + |d(y_n, y_m)| &\leq s(|d(x_n, x_{n+1})| + |d(y_n, y_{n+1})|) + s^2(|d(x_{n+1}, x_{n+2})| + |d(y_{n+1}, y_{n+2})|) \\ &+ \cdots + s^{m-n-1}(|d(x_{m-2}, x_{m-1})| + |d(y_{m-2}, y_{m-1})|) + s^{m-n}(|d(x_{m-1}, x_m)| + |d(y_{m-1}, y_m)|). \end{aligned}$$

By using (35), we get

$$\begin{aligned} |d(x_n, x_m)| + |d(y_n, y_m)| &\leq sh^n(|d(x_0, x_1)| + |d(y_0, y_1)|) + s^2h^{n+1}(|d(x_0, x_1)| + |d(y_0, y_1)|) \\ &+ \dots + s^{m-n-1}h^{m-2}(|d(x_0, x_1)| + |d(y_0, y_1)|) + s^{m-n}h^{m-1}(|d(x_0, x_1)| + |d(y_0, y_1)|) \\ &= sh^n\delta_0 + s^2h^{n+1}\delta_0 + \dots + s^{m-n-1}h^{m-2}\delta_0 + s^{m-n}h^{m-1}\delta_0 \\ &= \sum_{i=1}^{m-n} s^i h^{i+n-1}\delta_0. \end{aligned}$$

Therefore,

$$|d(x_n, x_m)| + |d(y_n, y_m)| \le \sum_{i=1}^{m-n} s^{i+n-1} h^{i+n-1} \delta_0$$

= $\sum_{t=n}^{m-1} s^t h^t \delta_0 \le \sum_{t=n}^{\infty} (sh)^t \delta_0$
= $\frac{(sh)^n}{1-sh} \delta_0$

and hence $|d(x_n, x_m)| + |d(y_n, y_m)| \leq \frac{(sh)^n}{1-sh} \delta_0 \to 0 \text{ as } m, n \to +\infty$. This implies that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X. Since X is complete, so there exists $x, y \in X$ such that $x_n \to x$ and $y_n \to y$ as $n \to +\infty$. We now show that x = S(x, y) and y = S(y, x). We suppose on the contrary that $x \neq S(x, y)$ and $y \neq S(y, x)$ so that

$$0 \prec d(x, S(x, y)) = u_1 \text{ and}$$

$$0 \prec d(y, S(y, x)) = u_2$$
(36)

then we have

$$\begin{aligned} u_1 &= d(x, S(x, y)) \precsim sd(x, x_{2n+2}) + sd(x_{2n+2}, S(x, y)) \\ &\precsim sd(x, x_{2n+2}) + sd(T(x_{2n+1}, y_{2n+1}), S(x, y)) \\ &\precsim sd(x, x_{2n+2}) + \frac{s \propto (d(x_{2n+1}, x) + d(y_{2n+1}, y))}{2} + \frac{s\beta d(x_{2n+1}, T(x_{2n+1}, y_{2n+1}))d(x, S(x, y))}{d(x, T(x_{2n+1}, y_{2n+1})) + d(x_{2n+1}, S(x, y)) + d(x_{2n+1}, x) + d(y_{2n+1}, y)} \\ &\precsim sd(x, x_{2n+2}) + \frac{s \propto (d(x_{2n+1}, x) + d(y_{2n+1}, y))}{2} + \frac{s\beta u_1 d(x_{2n+1}, x_{2n+2})}{d(x, x_{2n+2}) + d(x_{2n+1}, S(x, y)) + d(x_{2n+1}, x) + d(y_{2n+1}, y)} \end{aligned}$$

which implies that

$$|u_1| \le s|d(x, x_{2n+2})| + \frac{s \propto |d(x_{2n+1}, x) + d(y_{2n+1}, y)|}{2} + \frac{s\beta|u_1||d(x_{2n+1}, x_{2n+2})|}{|d(x, x_{2n+2}) + d(x_{2n+1}, S(x, y)) + d(x_{2n+1}, x) + d(y_{2n+1}, y)|}.$$
 (37)

By taking $n \to +\infty$, we get |d(x, S(x, y))| = 0, which is contradiction so that x = S(x, y). Now

$$\begin{aligned} u_2 &= d(y, S(y, x)) \precsim sd(y, y_{2n+2}) + sd(y_{2n+2}, S(y, x)) \\ &\precsim sd(y, y_{2n+2}) + sd(T(y_{2n+1}, x_{2n+1}), S(y, x)) \\ &\precsim sd(y, y_{2n+2}) + \frac{s \propto (d(y_{2n+1}, y) + d(x_{2n+1}, x))}{2} + \frac{s\beta d(y_{2n+1}, T(y_{2n+1}, x_{2n+1}))d(y, S(y, x))}{d(y_{2n+1}, S(y, x)) + d(y, T(y_{2n+1}, x_{2n+1})) + d(y_{2n+1}, y) + d(x_{2n+1}, x)} \\ &\precsim sd(y, y_{2n+2}) + \frac{s \propto (d(y_{2n+1}, y) + d(x_{2n+1}, x))}{2} + \frac{s\beta u_2 d(y_{2n+1}, y_{2n+2})}{d(y_{2n+1}, S(y, x)) + d(y, y_{2n+2}) + d(y_{2n+1}, y) + d(x_{2n+1}, x)} \end{aligned}$$

which implies that

$$|u_2| \le s|d(y, y_{2n+2})| + \frac{s \propto |d(y_{2n+1}, y) + d(x_{2n+1}, x)|}{2} + \frac{s\beta|u_2||d(y_{2n+1}, y_{2n+2})|}{|d(y_{2n+1}, S(y, x)) + d(y, y_{2n+2}) + d(y_{2n+1}, y) + d(x_{2n+1}, x)|}.$$
 (38)

By taking $n \to +\infty$, gives us |d(y, S(y, x))| = 0 which is a contradiction so that y = S(y, x). It follows similarly that x = T(x, y) and y = T(y, x). Hence (x, y) is a common coupled fixed point of S and T. As in Theorem 2.1, the uniqueness of common coupled fixed point remains a consequence of contraction condition (24). We have obtained the existence and uniqueness of a unique common coupled fixed point of

$$D_S(x_{2n}, y_{2n}), D_S(y_{2n}, x_{2n}), D_T(x_{2n+1}, y_{2n+1}), D_T(y_{2n+1}, x_{2n+1}) \neq 0$$
(39)

for all $n \in \mathbb{N}$. Now assume that $D_S(x_{2n}, y_{2n}) = 0$ for some $n \in \mathbb{N}$. From

$$d(x_{2n,2n+2}) + d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) = 0.$$
(40)

We get $x_{2n} = x_{2n+1} = x_{2n+2}$ and $y_{2n} = y_{2n+1}$. If $D_S(y_{2n}, x_{2n}) \neq 0$, using (1), we deduce

$$d(y_{2n+1}, y_{2n+2}) = d(S(y_{2n}, x_{2n}), T(y_{2n+1}, x_{2n+1})) = 0.$$
(41)

That is $y_{2n+1} = y_{2n+2}$ (this equality holds also if $D_S(y_{2n}, x_{2n}) = 0$). The equalities

$$x_{2n} = x_{2n+1} = x_{2n+2}, y_{2n} = y_{2n+1} = y_{2n+2}.$$
(42)

This ensure that (x_{2n+1}, y_{2n+1}) is a unique common coupled fixed point of S and T. The same holds if either $D_S(y_{2n}, x_{2n}) = 0$, $D_T(x_{2n+1}, y_{2n+1}) = 0$ or $D_T(y_{2n+1}, x_{2n+1}) = 0$.

Corollary 2.5. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let $S, T : X \times X \to X$ are mappings satisfying:

$$d(S(x,y),T(u,v)) \precsim \begin{cases} \frac{\beta d(x,S(x,y))d(u,T(u,v))}{d(x,T(u,v))+d(u,S(x,y))+d(x,u)+d(y,v)} & \text{if } D \neq 0\\ 0 & \text{if } D = 0, \end{cases}$$
(43)

for all $x, y, u, v \in X$, where D = d(x, T(u, v)) + d(u, S(x, y)) + d(x, u) + d(y, v) and β is a nonnegative real such that $0 < s\beta < 1$. Then S and T have a unique common coupled fixed point.

Proof. We can prove this result by applying Theorem 2.4 by setting $\propto = 0$.

Corollary 2.6. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let the mapping $T: X \times X \to X$ satisfy

$$d(T(x,y),T(u,v)) \precsim \begin{cases} \frac{\alpha(d(x,u)+d(y,v))}{2} + \frac{\beta d(x,T(x,y))d(u,T(u,v))}{d(x,T(u,v))+d(u,T(x,y))+d(x,u)+d(y,v)} & \text{if } D \neq 0\\ 0 & \text{if } D = 0 \end{cases}$$
(44)

for all $x, y, u, v \in X$, where D = d(x, T(u, v)) + d(u, T(x, y)) + d(x, u) + d(y, v) and $\propto \beta$ are nonnegative reals with $s(\alpha + \beta) < 1$. 1. Then T has a unique coupled fixed point.

Proof. We can prove this result by applying Theorem 2.4 by setting S = T.

Corollary 2.7. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and let the mapping $T: X \times X \to X$ satisfy:

$$d(T^{n}(x,y),T^{n}(u,v)) \precsim \begin{cases} \frac{\alpha(d(x,u)+d(y,v))}{2} + \frac{\beta d(x,T^{n}(x,y))d(u,T^{n}(u,v))}{d(x,T^{n}(u,v))+d(u,T^{n}(x,y))+d(x,u)+d(y,v)} & \text{if } D \neq 0\\ 0 & \text{if } D = 0 \end{cases}$$
(45)

for all $x, y, u, v \in X$, where $D = d(x, T^n(u, v)) + d(u, T^n(x, y)) + d(x, u) + d(y, v)$ and $\propto \beta$ are nonnegative reals with $s(\alpha + \beta) < 1$. Then T has a unique coupled fixed point.

Acknowledgment

The Author thanks the editor and the referees for their valuable comments and suggestions which greatly helped to improve the quality of this paper.

Conflict of Interests: The Author declares that there is no conflict of interests regarding the publication of this paper.

References

- A.Azam, B.Fisher and M.Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32(3)(2011), 243-253.
- [2] A.Azam and M.Arshad, Common fixed points of generalized contractive maps in cone metric spaces, Iranian Mathematical Society, 35(2)(2009), 255-264.
- [3] M.Akkouchi, A common fixed point theorem for expansive mappings under strict implicit conditions on b-metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 50(2011), 5-15.

- [4] H.Aydi, M.Bota, E.Karapinar and S.Mitrovic, A fixed point theorem for set valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012(2012), Article ID 88.
- [5] I.A.Bakhtin, The contraction principle in quasi-metric spaces, Funct. Anal., 30(1989), 26-37.
- [6] S.Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, 3(1922), 133-181.
- [7] S.Bhatt, S.Chaukiyal and R.C.Dimri, Common fixed point of mappings satisfying rational inequality in complex valued metric spaces, International Journal of Pure and Applied Mathematics, 73(2)(2011), 159-164.
- [8] T.Gnana Bhaskar and V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Applications, 65(7)(2006), 1379-1393.
- [9] S.Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
- [10] A.K.Dubey, Rita Shukla and R.P.Dubey, Some Fixed Point Theorems in Complex Valued b-Metric Spaces, Journal of Complex Systems, 2015(2015), Article ID 832467.
- [11] A.K. Dubey, Common fixed point results for contractive mappings in complex valued b-metric spaces, Nonlinear Funct. Anal. & Appl., 20(2)(2015), 257-268.
- [12] M.A.Kutbi, J.Ahmad, N.Hussain and M.Arshad, Common fixed point results for mappings with rational expressions, Abstract and Applied Analysis, 2013(2013), Article ID 549518.
- [13] M.A.Kutbi, A.Azam, J.Ahmad and C.Di Bari, Some Common Coupled Fixed Point Results for Generalized Contraction in Complex-Valued Metric Spaces, Journal of Applied Mathematics, 2013(2013), Article ID 352927.
- [14] E.Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Computers & Mathematics with Applications, 59(12)(2010), 3656-3668.
- [15] M.Kir and H.Kiziltunc, On some well known fixed point theorems in b-metric spaces, Turkish J. Anal. Number Theory, 1(2013), 13-16.
- [16] A.A.Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, The Scientific World Journal, 2014(2014), Article ID 587825.
- [17] N.Malhotra and B.Bansal, Some common coupled fixed point theorems for generalized contraction in b-metric spaces, Journal of Nonlinear Science and Applications, 8(2015), 8-16.
- [18] M.Pacurar, A fixed point result for ϕ contractions on b-metric spaces without the boundedness assumption, Fasc. Math., 43(2010), 127-137.
- [19] F.Rouzkard and M.Imdad, Some common fixed point theorems on complex valued metric spaces, Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.
- [20] K.P.R.Rao, P.R.Swamy and J.R.Prasad, A common fixed point theorem in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research, 1(1)(2013).
- [21] W.Sintunavarat and P.Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, Journal of Inequalities and Applications, 2012(2012), Article ID 84.
- [22] W.Sintunavarat, Y.J.Cho and P.Kumam, Urysohn integral equations approach by common fixed points in complex valued metric spaces, Advances in Difference Equations, 2013(2013), Article ID 49.
- [23] B.Samet, E.Karapinar, H.Aydi and V.Cojbasic, Discussion on some coupled fixed point theorems, Fixed Point Theory and Applications, 2013(2013), Article ID 50.