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1. Introduction and Preliminaries

The Banach fixed point theorem [6] is the first important result in fixed point theory. There are a lot of generalizations of

the Banach contraction mapping principle in the literature. The concept of b-metric space was introduced by Bakhtin [5]

and Czerwik [9]. They proved the contraction mapping principle in b-metric spaces that generalized the famous Banach

contraction mapping principle in metric spaces.

Azam et al. [1] first introduced the concept of complex valued metric spaces and proved some common fixed point theorems

for a pair of contractive type mappings satisfying a rational inequality. Many authors have been studied several fixed point

and common fixed point results for two maps satisfying rational inequality in the context of complex valued-metric spaces

[7, 13, 19, 21, 22].

In 2013, Rao et al. [20] introduced the notion of complex valued b-metric space which was more general than the well

known complex valued metric spaces [1]. In sequel, AA.Mukheimer [16] proved some common fixed point theorems of two

self mappings satisfying some contraction condition on complex valued b-metric spaces.

In [8], Bhaskar and Lakshmikantham introduced the concept of coupled fixed points for a given partially ordered set

X. Subsequently, Samet et al. [23] proved the most of the coupled fixed point theorems on ordered metric spaces. The

purpose of the present paper is to extend and generalize the results of Kutbi et al. [13] and prove the existence and
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uniqueness of the common coupled fixed point in complete complex valued b-metric space in view of diverse contrac-

tive conditions. The results given in this paper substantially extend and strengthen the results given in [1, 10, 11, 13, 16, 20].

The following definitions and results will be needed in the sequel. Let C be the set of complex numbers and z1, z2 ∈ C.

Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is satisfied:

(1). Re(z1) = Re(z2), Im(z1) < Im(z2),

(2). Re(z1) < Re(z2), Im(z1) = Im(z2),

(3). Re(z1) < Re(z2), Im(z1) < Im(z2),

(4). Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we write z1 � z2 if z1 6= z2 and one of (1), (2) and (3) is satisfied and we write z1 ≺ z2 if only (3) is satisfied.

Notice that

(1). 0 - z1 � z2⇒ |z1| < |z2|,

(2). z1 - z2,z2 ≺ z3⇒ z1 ≺ z3.

Definition 1.1 ([20]). Let X be a nonempty set and let s ≥ 1 be a given real number. A function d : X ×X → C is called

a complex valued b-metric on X if for all x, y, z ∈ X the following conditions are satisfied:

(1). 0 - d(x, y) and d(x, y) = 0 if and only if x = y;

(2). d(x, y) = d(y, x);

(3). d(x, y) - s[d(x, z) + d(z, y)].

The pair (X, d) is called a complex valued b-metric space.

Example 1.2 ([20]). Let X = [0, 1]. Define the mapping d : X ×X → C by d(x, y) = |x − y|2 + i|x − y|2 for all x, y ∈ X.

Then (X, d) is a complex valued b-metric space with s = 2.

Definition 1.3 ([20]). Let (X, d) be a complex valued b-metric space.

(1). A point x ∈ X is called interior point of a set A ⊆ X whenever there exists 0 ≺ r ∈ C such that B(x, r) =

{y ∈ X : d(x, y) ≺ r} ⊆ A, where B(x, r) is an open ball. Then B(x, r) = {y ∈ X : d(x, y) - r} is a closed ball.

(2). A point x ∈ X is called a limit point of a set A whenever for every 0 ≺ r ∈ C, B(x, r) ∩ (A− {x}) 6= φ.

(3). A subset A ⊆ X is called open set whenever each element of A is an interior point of A.

(4). A subset B ⊆ X is called closed set whenever each limit point of B belongs to B. The family F = {B(x, r) : x ∈ X, 0 ≺ r}

is a sub-basis for a Hausdorff topology τ on X.

Definition 1.4 ([20]). Let (X, d) be a complex valued b-metric space, {xn} be a sequence in X and x ∈ X.
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(1). If for every c ∈ C, with 0 ≺ c there is N ∈ N such that for all n > N, d(xn, x) ≺ c, then {xn} is said to be convergent,

{xn}converges to x and x is the limit point of {xn}. We denote this by limn→∞xn = x or {xn} → x asn→∞.

(2). If for every c ∈ C, with 0 ≺ c there is N ∈ N such that for all n > N, d(xn, xn+m) ≺ c, where m ∈ N, then {xn}is said

to be Cauchy sequence.

(3). If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete complex valued b-metric space.

Lemma 1.5 ([20]). Let (X, d) be a complex valued b-metric space and let {xn} be a sequence in X. Then {xn}converges to

x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 1.6 ([20]). Let (X, d) be a complex valued b-metric space and let {xn}be a sequence in X. Then {xn} is a Cauchy

sequence if and only if |d(xn, xn+m)| → 0 as n→∞, where m ∈ N.

2. Common Coupled Fixed Point Theorems

Theorem 2.1. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let S, T : X ×X → X

are mappings satisfying:

d(S(x, y), T (u, v)) -
∝ (d(x, u) + d(y, v))

2
+

(βd(x, S(x, y))d(u, T (u, v)) + γd(u, S(x, y))d(x, T (u, v)))

(1 + d(x, u) + d(y, v))
(1)

for all x, y, u, v ∈ X and ∝, β and γ are nonnegative reals with s ∝ +β < 1 and α + γ < 1. Then S and T have a unique

common coupled fixed point.

Proof. Let x0 and y0 be arbitrary points in X. Define

x2n+1 = S(x2n, y2n), y2n+1 = S(y2n, x2n) and

x2n+2 = T (x2n+1, y2n+1), y2n+2 = T (y2n+1, x2n+1) (2)

for n = 0, 1, 2, . . . . Now, we show that the sequences {xn} and {yn} are Cauchy sequences in X Then,

d(x2n+1, x2n+2) = d(S(x2n, y2n), T (x2n+1, y2n+1))

-
∝ (d(x2n, x2n+1) + d(y2n, y2n+1))

2

+
(βd(x2n, S(x2n, y2n))d(x2n+1, T (x2n+1, y2n+1)) + γd(x2n+1, S(x2n, y2n))d(x2n, T (x2n+1, y2n+1)))

1 + d(x2n, x2n+1) + d(y2n, y2n+1)

.
∝ (d(x2n, x2n+1) + d(y2n, y2n+1))

2
+

βd(x2n, x2n+1)d(x2n+1, x2n+2)

1 + d(x2n, x2n+1) + d(y2n, y2n+1)

+
γd(x2n+1, x2n+1)d(x2n, x2n+2)

1 + d(x2n, x2n+1) + d(y2n, y2n+1)

-
∝ (d(x2n, x2n+1) + d(y2n, y2n+1))

2
+

βd(x2n, x2n+1)d(x2n+1, x2n+2)

1 + d(x2n, x2n+1) + d(y2n, y2n+1)
(3)

which implies that

|d(x2n+1, x2n+2)| ≤ ∝ |d(x2n, x2n+1) + d(y2n, y2n+1)|
2

+
β|d(x2n, x2n+1)d(x2n+1, x2n+2)|
|1 + d(x2n, x2n+1) + d(y2n, y2n+1)| . (4)

Since |1 + d(x2n, x2n+1) + d(y2n, y2n+1)| > |d(x2n, x2n+1)|, so we get

|d(x2n+1, x2n+2)| ≤ ∝ |d(x2n, x2n+1)|+ ∝ |d(y2n, y2n+1)|
2

+ β|d(x2n+1, x2n+2)| (5)

|d(x2n+1, x2n+2)| ≤ 1

2
(
∝

1− β )|d(x2n, x2n+1)|+ 1

2
(
∝

1− β )|d(y2n, y2n+1)|. (6)
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Similarly, one can show that

|d(y2n+1, y2n+2)| ≤ 1

2
(
∝

1− β )|d(y2n, y2n+1)|+ 1

2
(
∝

1− β )|d(x2n, x2n+1)|. (7)

Also, d(x2n+2, x2n+3)

= d(T (x2n+1, y2n+1), S(x2n+2, y2n+2))

-
∝ (d(x2n+1, x2n+2) + d(y2n+1, y2n+2))

2

+
(βd(x2n+1, T (x2n+1, y2n+1))d(x2n+2, S(x2n+2, y2n+2)) + γd(x2n+2, T (x2n+1, y2n+1))d(x2n+1, S(x2n+2, y2n+2)))

1 + d(x2n+1, x2n+2) + d(y2n+1, y2n+2)

-
∝ (d(x2n+1, x2n+2) + d(y2n+1, y2n+2))

2
+

βd(x2n+1, x2n+2)d(x2n+2, x2n+3)

1 + d(x2n+1, x2n+2) + d(y2n+1, y2n+2)

+
γd(x2n+2, x2n+2)d(x2n+1, x2n+3)

1 + d(x2n+1, x2n+2) + d(y2n+1, y2n+2)

-
∝ (d(x2n+1, x2n+2) + d(y2n+1, y2n+2))

2
+

βd(x2n+1, x2n+2)d(x2n+2, x2n+3)

1 + d(x2n+1, x2n+2) + d(y2n+1, y2n+2)
(8)

so that

|d(x2n+2, x2n+3)| ≤ ∝ |d(x2n+1, x2n+2) + d(y2n+1, y2n+2)|
2

+
β|d(x2n+1, x2n+2)||d(x2n+2, x2n+3)|
|1 + d(x2n+1, x2n+2) + d(y2n+1, y2n+2)| . (9)

As |1 + d(x2n+1, x2n+2) + d(y2n+1, y2n+2)| > |d(x2n+1, x2n+2)|, therefore,

|d(x2n+2, x2n+3)| ≤ 1

2
(
∝

1− β )|d(x2n+1, x2n+2)|+ 1

2
(
∝

1− β )|d(y2n+1, y2n+2)|. (10)

Similarly, one can show that

|d(y2n+2, y2n+3)| ≤ 1

2
(
∝

1− β )|d(y2n+1, y2n+2)|+ 1

2
(
∝

1− β )|d(x2n+1, x2n+2)|. (11)

Adding up (6) & (7) and (10) & (11) we get

|d(x2n+1, x2n+2)|+ |d(y2n+1, y2n+2)| ≤ ∝
1− β |d(x2n, x2n+1)|+ ∝

1− β |d(y2n, y2n+1)| (12)

|d(x2n+2, x2n+3)|+ |d(y2n+2, y2n+3)| ≤ ∝
1− β |d(x2n+1, x2n+2)|+ ∝

1− β |d(y2n+1, y2n+2)|. (13)

Since s ∝ +β < 1 and s ≥ 1 we get ∝ +β < 1. Therefore with h = ∝
1−β < 1, and for all n ≥ 0 and consequently, we have

|d(xn, xn+1)|+ |d(yn, yn+1)| ≤ h(|d(xn−1, xn)|+ |d(yn−1, yn)|)

≤ · · · ≤ hn(|d(x0, x1)|+ |d(y0, y1)|). (14)

Now if |d(xn, xn+1)|+ |d(yn, yn+1)| = δn then

δn ≤ hδn−1 ≤ · · · ≤ hnδ0. (15)
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Without loss of generality, we take m > n,m, n ∈ N, and since 0 ≤ h < 1, so we get

|d(xn, xm)|+ |d(yn, ym)| ≤ s(|d(xn, xn+1)|+ |d(xn+1, xm)|) + s(|d(yn, yn+1)|+ |d(yn+1, ym)|)

≤ s(|d(xn, xn+1)|+ |d(yn, yn+1)|) + s2(|d(xn+1, xn+2)|+ |d(xn+2, xm)|)

+ s2(|d(yn+1, yn+2)|+ |d(yn+2, ym)|)

≤ s(|d(xn, xn+1)|+ |d(yn, yn+1)|) + s2(|d(xn+1, xn+2)|+ |d(yn+1, yn+2)|)

+ s3(|d(xn+2, xn+3)|+ |d(xn+3, xm)|) + s3(|d(yn+2, yn+3)|+ |d(yn+3, ym)|)

. . .

|d(xn, xm)|+ |d(yn, ym)| ≤ s(|d(xn, xn+1)|+ |d(yn, yn+1)|) + s2(|d(xn+1, xn+2)|+ |d(yn+1, yn+2)|)

+ sm−n−1(|d(xm−2, xm−1)|+ |d(ym−2, ym−1)|) + sm−n(|d(xm−1, xm)|+ |d(ym−1, ym)|).

By using (15), we get

|d(xn, xm)|+ |d(yn, ym)| ≤ shn(|d(x0, x1)|+ |d(y0, y1)|) + s2hn+1(|d(x0, x1)|+ |d(y0, y1)|)

. . .

+ sm−n−1hm−2(|d(x0, x1)|+ |d(y0, y1)|) + sm−nhm−1(|d(x0, x1)|+ |d(y0, y1)|)

= shnδ0 + s2hn+1δ0 + · · ·+ sm−n−1hm−2δ0 + sm−nhm−1δ0

=

m−n∑
i=1

sihi+n−1δ0.

Therefore,

|d(xn, xm)|+ |d(yn, ym)| ≤
m−n∑
i=1

si+n−1hi+n−1δ0

=

m−1∑
t=n

sthtδ0

≤
∞∑
t=n

(sh)tδ0 =
(sh)n

1− shδ0

and hence

|d(xn, xm)|+ |d(yn, ym)| ≤ (sh)n

1− shδ0 → 0 as m,n→ +∞.

This implies that {xn} and {yn} are Cauchy sequences in X. Since X is complete, there exists x, y ∈ X such that xn → x

and yn → y as n → +∞. We now show that x = S(x, y)and y = S(y, x). We assume on the contrary that x 6= S(x, y) and

y 6= S(y, x) so that 0 ≺ d(x, S(x, y)) = u1 and 0 ≺ d(y, S(y, x)) = u2; then we have

u1 = d(x, S(x, y)) - sd(x, x2n+2) + sd(x2n+2, S(x, y)) (16)

- sd(x, x2n+2) + sd(T (x2n+1, y2n+1), S(x, y))

- sd(x, x2n+2) +
s ∝ (d(x2n+1, x) + d(y2n+1, y))

2
+
sβd(x2n+1, T (x2n+1, y2n+1))d(x, S(x, y))

1 + d(x2n+1, x) + d(y2n+1, y)

+
sγd(x, T (x2n+1, y2n+1))d(x2n+1, S(x, y))

1 + d(x2n+1, x) + d(y2n+1, y)

= sd(x, x2n+2) +
s ∝ (d(x2n+1, x) + d(y2n+1, y))

2

+
sβd(x2n+1, x2n+2)d(x, S(x, y))

1 + d(x2n+1, x) + d(y2n+1, y)
+
sγd(x, x2n+2)d(x2n+1, S(x, y))

1 + d(x2n+1, x) + d(y2n+1, y)
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which implies that

|u1| ≤ s|d(x, x2n+2)|+ s ∝ |d(x2n+1, x) + d(y2n+1, y)|
2

+
sβ|d(x2n+1, x2n+2)||d(x, S(x, y))|
|1 + d(x2n+1, x) + d(y2n+1, y)|

+
sγ|d(x, x2n+2)||d(x2n+1, S(x, y))|
|1 + d(x2n+1, x) + d(y2n+1, y)| . (17)

Taking the limit of (17) as n → +∞, we obtain |d(x, S(x, y))| = 0, which is a contradiction so that x = S(x, y). Similarly,

one can prove that y = S(y, x). It follows similarly that x = T (x, y) and y = T (y, x). Hence (x, y) is a common coupled fixed

point of S and T. Now, we show that S andT have a unique common coupled fixed point. For this, assume that (x?, y?) ∈ X

is another common coupled fixed point of S and T . Then

d(x, x?) = d(S(x, y), T (x?, y?))

-
∝ (d(x, x?) + d(y, y?))

2
+
βd(x, S(x, y))d(x?, T (x?, y?))

1 + d(x, x?) + d(y, y?)
+
γd(x, T (x?, y?))d(x?, S(x, y))

1 + d(x, x?) + d(y, y?)
.

-
∝ (d(x, x?) + d(y, y?))

2
+

βd(x, x)d(x?, x?)

1 + d(x, x?) + d(y, y?)
+

γd(x, x?)d(x?, x)

1 + d(x, x?) + d(y, y?)
.

So that

|d(x, x?)| ≤ ∝ |d(x, x?) + d(y, y?)|
2

+
γ|d(x, x?)||d(x?, x)|
|1 + d(x, x?) + d(y, y?)| . (18)

Since |1 + d(x, x?) + d(y, y?)| > |d(x, x?)|, so we get

|d(x, x?)| ≤ ∝ |d(x, x?) + d(y, y?)|
2

+ γ|d(x, x?)| = (
∝

2− ∝ −2γ
)|d(y, y?)|. (19)

Similarly, one can easily prove that

|d(y, y?)| ≤ (
∝

2− ∝ −2γ
)|d(x, x?)|. (20)

Adding up (19) and (20), we get

|d(x, x?)|+ |d(y, y?)| ≤ (
∝

2− ∝ −2γ
)(|d(x, x?)|+ |d(y, y?)|)

which is a contradiction because ∝ +γ < 1. So x? = x and y = y? which proves the uniqueness of common coupled fixed

point of S and T. This completes the proof.

Corollary 2.2. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let T : X ×X → X

satisfy

d(T (x, y), T (u, v)) -
∝ (d(x, u) + d(y, v))

2
+
βd(x, T (x, y))d(u, T (u, v))

1 + d(x, u) + d(y, v)
+
γd(u, T (x, y))d(x, T (u, v))

1 + d(x, u) + d(y, v)
(21)

for all x, y, u, v ∈ X, where ∝, β and γ are nonnegative reals with s ∝ +β < 1 and ∝ +γ < 1. Then T has a unique coupled

fixed point.

Proof. We can prove this result by applying Theorem 2.1 by setting S = T.

Corollary 2.3. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let T : X ×X → X

satisfy

d(Tn(x, y), Tn(u, v)) -
∝ (d(x, u) + d(y, v))

2
+
βd(x, Tn(x, y))d(u, Tn(u, v))

1 + d(x, u) + d(y, v)
+
γd(u, Tn(x, y))d(x, Tn(u, v))

1 + d(x, u) + d(y, v)
(22)

for all x, y, u, v ∈ X, where ∝, β and γ are nonnegative reals with s ∝ +β < 1 and ∝ +γ < 1. Then T has a unique coupled

fixed point.
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Proof. From Corollary 2.2, we obtain (x, y) ∈ X ×X such that Tn(x, y) = x. The uniqueness follows from

d(T (x, y), x) = d(T (Tn(x, y), y), Tn(x, y))

= d(Tn(T (x, y), y), Tn(x, y))

-
∝ (d(T (x, y), x) + d(y, y))

2
+
βd(T (x, y), Tn(T (x, y)))d(x, Tn(x, y))

1 + d(T (x, y), x) + d(y, y)
+
γd(x, Tn(T (x, y), y))d(T (x, y)Tn(x, y))

1 + d(T (x, y), x) + d(y, y)

-
∝ (d(T (x, y), x))

2
+
γd(x, T (Tn(x, y), y))d(T (x, y), x)

1 + d(T (x, y), x)

=
∝ (d(T (x, y), x))

2
+
γd(x, T (x, y))d(x, T (x, y))

1 + d(x, T (x, y))
. (23)

By taking modulus of (23) we get

|d(T (x, y), x)| ≤ ∝ |d(T (x, y), x)|
2

+
γ|d(x, T (x, y))||d(x, T (x, y))|

|1 + d(x, T (x, y))| .

Since |1 + d(x, T (x, y))| > |d(x, T (x, y))|

|d(T (x, y), x)| ≤ (
∝
2

+ γ)|d(T (x, y), x)|

< |d(T (x, y), x)|, a contradiction.

So, T (x, y) = x. Hence T (x, y) = Tn(x, y) = x. Similarly, it can be proved,

T (y, x) = Tn(y, x) = y.

Therefore, the coupled fixed of T is unique. This completes the proof.

Theorem 2.4. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let S, T : X ×X → X

are mappings satisfying:

d(S(x, y), T (u, v)) -


∝(d(x,u)+d(y,v))

2
+ βd(x,S(x,y))d(u,T (u,v))

d(x,T (u,v))+d(u,S(x,y))+d(x,u)+d(y,v)
if D 6= 0

0 if D = 0

(24)

for all x, y, u, v ∈ X, where D = d(x, T (u, v)) + d(u, S(x, y)) + d(x, u) + d(y, v) and ∝, β are nonnegative reals with s(∝

+β) < 1. Then S and T have a unique common coupled fixed point.

Proof. Let x0 and y0 be arbitrary points in X. Define

x2n+1 = S(x2n, y2n), y2n+1 = S(y2n, x2n) and

x2n+2 = T (x2n+1, y2n+1), y2n+2 = T (y2n+1, x2n+1), for n = 0, 1, 2, (25)

Now, we assume that

DS(x2n, y2n) = d(S(x2n, y2n), T (x2n+1, y2n+1))

= d(x2n, T (x2n+1, y2n+1)) + d(x2n+1, S(x2n, y2n)) + d(x2n, x2n+1) + d(y2n, y2n+1)

= d(x2n, x2n+2) + d(x2n, x2n+1) + d(y2n, y2n+1) 6= 0,

DS(y2n, x2n) = d(S(y2n, x2n), T (y2n+1, x2n+1))

= d(y2n, T (y2n+1, x2n+1)) + d(y2n+1, S(y2n, x2n)) + d(x2n, x2n+1) + d(y2n, y2n+1)

= d(y2n, y2n+2) + d(x2n, x2n+1) + d(y2n, y2n+1) 6= 0.
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Then

d(x2n+1, x2n+2) = d(S(x2n, y2n), T (x2n+1, y2n+1))

-
∝ (d(x2n, x2n+1) + d(y2n, y2n+1))

2
+
βd(x2n, S(x2n, y2n))d(x2n+1, T (x2n+1, y2n+1))

DS(x2n, y2n)

=
∝ (d(x2n, x2n+1) + d(y2n, y2n+1))

2
+

βd(x2n, x2n+1)d(x2n+1, x2n+2)

d(x2n, x2n+2) + d(x2n, x2n+1) + d(y2n, y2n+1)
. (26)

Taking modulus of (26), we get

|d(x2n+1, x2n+2)| ≤ ∝ |d(x2n, x2n+1) + d(y2n, y2n+1)|
2

+
β|d(x2n, x2n+1)||d(x2n+1, x2n+2)|

|d(x2n, x2n+2) + d(x2n, x2n+1) + d(y2n, y2n+1)|

≤ ∝ |d(x2n, x2n+1) + d(y2n, y2n+1)|
2

+ β|d(x2n, x2n+1)|.

As |d(x2n+1, x2n+2)| ≤ |d(x2n, x2n+2) + d(x2n+1, x2n) + d(y2n, y2n+1)|. Therefore

|d(x2n+1, x2n+2)| ≤ (∝ +2β)

2
|d(x2n,x2n+1)|+ ∝

2
|d(y2n,y2n+1)|. (27)

Similarly, it can be easily proved,

|d(y2n+1, y2n+2)| ≤ (∝ +2β)

2
|d(y2n,y2n+1)|+ ∝

2
|d(x2n,x2n+1)|. (28)

Now if

DT (x2n+1, y2n+1) = d(T (x2n+1,y2n+1), S(x2n+2,y2n+2))

= d(x2n+2,T (x2n+1, y2n+1)) + d(x2n+1,S(x2n+2, y2n+2)) + d(x2n+2, x2n+1) + d(y2n+2, y2n+1)

= d(x2n+1, x2n+3) + d(x2n+2, x2n+1) + d(y2n+2, y2n+1) 6= 0.

Then,

d(x2n+2, x2n+3) = d(T (x2n+1, y2n+1), S(x2n+2, y2n+2))

-
∝ (d(x2n+2, x2n+1) + d(y2n+2, y2n+1))

2
+
βd(x2n+2, S(x2n+2, y2n+2))d(x2n+1, T (x2n+1, y2n+1))

DT (x2n+1, y2n+1)

=
∝ (d(x2n+2, x2n+1) + d(y2n+2, y2n+1))

2
+

βd(x2n+2, x2n+3)d(x2n+1, x2n+2)

d(x2n+1, x2n+3) + d(x2n+2, x2n+1) + d(y2n+2, y2n+1)
. (29)

Taking modulus of (29), we get

|d(x2n+2, x2n+3)| ≤ ∝ |d(x2n+2, x2n+1) + d(y2n+2, y2n+1)|
2

+
β|d(x2n+2, x2n+3)||d(x2n+1, x2n+2)|

|d(x2n+1, x2n+3)|+ |d(x2n+2, x2n+1)|+ |d(y2n+2, y2n+1)|

≤ ∝ |d(x2n+2, x2n+1) + d(y2n+2, y2n+1)|
2

+ β|d(x2n+1, x2n+2)|.

As |d(x2n+2, x2n+3)| ≤ |d(x2n+2, x2n+1)|+ |d(x2n+1, x2n+3)|+ |d(y2n+2, y2n+1)|. Therefore

|d(x2n+2, x2n+3)| ≤ (∝ +2β)

2
|d(x2n+2, x2n+1)|+ ∝

2
|d(y2n+1, y2n+2)|. (30)

Similarly, if DT (y2n+1, x2n+1) 6= 0 one can easily prove that

|d(y2n+2, y2n+3)| ≤ (∝ +2β)

2
|d(y2n+1, y2n+2)|+ ∝

2
|d(x2n+1, x2n+2)|. (31)
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Adding up the inequalities (27) with (28) and (30) with (31), we get

|d(x2n+1, x2n+2)|+ |d(y2n+1, y2n+2)| ≤ (∝ +β)(|d(x2n, x2n+1)|+ |d(y2n, y2n+1)|) (32)

|d(x2n+2, x2n+3)|+ |d(y2n+2, y2n+3)| ≤ (∝ +β)(|d(x2n+1, x2n+2)|+ |d(y2n+1, y2n+2)|). (33)

Since s(∝ +β) < 1 and s ≥ 1, we get ∝ +β < 1. Therefore with h = (∝ +β) < 1 and for all n ≥ 0 and consequently, we get

|d(xn, xn+1)|+ |d(yn, yn+1)| ≤ h(|d(xn−1, xn)|+ |d(yn−1, yn)|) ≤ · · · ≤ hn(|d(x0, x1)|+ |d(y0, y1)|). (34)

Now if |d(xn, xn+1)|+ |d(yn, yn+1)| = δn, then

δn ≤ hδn−1 ≤ · · · ≤ hnδ0. (35)

Without loss of generality, we take m > n,m, n ∈ N and since 0 ≤ h < 1, so we get

|d(xn, xm)|+ |d(yn, ym)| ≤ s(|d(xn, xn+1)|+ |d(xn+1, xm)|) + s(|d(yn, yn+1)|+ |d(yn+1, ym)|)

≤ s(|d(xn, xn+1)|+ |d(yn, yn+1)|) + s2(|d(xn+1, xn+2)|+ |d(xn+2, xm)|)

+ s2(|d(yn+1, yn+2)|+ |d(yn+2, ym)|)

. . .

|d(xn, xm)|+ |d(yn, ym)| ≤ s(|d(xn, xn+1)|+ |d(yn, yn+1)|) + s2(|d(xn+1, xn+2)|+ |d(yn+1, yn+2)|)

+ · · ·+ sm−n−1(|d(xm−2, xm−1)|+ |d(ym−2, ym−1)|) + sm−n(|d(xm−1, xm)|+ |d(ym−1, ym)|).

By using (35), we get

|d(xn, xm)|+ |d(yn, ym)| ≤ shn(|d(x0, x1)|+ |d(y0, y1)|) + s2hn+1(|d(x0, x1)|+ |d(y0, y1)|)

+ · · ·+ sm−n−1hm−2(|d(x0, x1)|+ |d(y0, y1)|) + sm−nhm−1(|d(x0, x1)|+ |d(y0, y1)|)

= shnδ0 + s2hn+1δ0 + · · ·+ sm−n−1hm−2δ0 + sm−nhm−1δ0

=

m−n∑
i=1

sihi+n−1δ0.

Therefore,

|d(xn, xm)|+ |d(yn, ym)| ≤
m−n∑
i=1

si+n−1hi+n−1δ0

=

m−1∑
t=n

sthtδ0 ≤
∞∑
t=n

(sh)tδ0

=
(sh)n

1− shδ0

and hence |d(xn, xm)| + |d(yn, ym)| ≤ (sh)n

1−sh δ0 → 0 asm, n → +∞. This implies that {xn} and {yn} are Cauchy sequences

in X. Since X is complete, so there exists x, y ∈ X such that xn → x and yn → y as n → +∞. We now show that

x = S(x, y)and y = S(y, x). We suppose on the contrary that x 6= S(x, y) and y 6= S(y, x) so that

0 ≺ d(x, S(x, y)) = u1 and

0 ≺ d(y, S(y, x)) = u2 (36)
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then we have

u1 = d(x, S(x, y)) - sd(x, x2n+2) + sd(x2n+2, S(x, y))

- sd(x, x2n+2) + sd(T (x2n+1, y2n+1), S(x, y))

- sd(x, x2n+2) +
s ∝ (d(x2n+1, x) + d(y2n+1, y))

2
+

sβd(x2n+1, T (x2n+1, y2n+1))d(x, S(x, y))

d(x, T (x2n+1, y2n+1)) + d(x2n+1, S(x, y)) + d(x2n+1, x) + d(y2n+1, y)

- sd(x, x2n+2) +
s ∝ (d(x2n+1, x) + d(y2n+1, y))

2
+

sβu1d(x2n+1, x2n+2)

d(x, x2n+2) + d(x2n+1, S(x, y)) + d(x2n+1, x) + d(y2n+1, y)

which implies that

|u1| ≤ s|d(x, x2n+2)|+ s ∝ |d(x2n+1, x) + d(y2n+1, y)|
2

+
sβ|u1||d(x2n+1, x2n+2)|

|d(x, x2n+2) + d(x2n+1, S(x, y)) + d(x2n+1, x) + d(y2n+1, y)| . (37)

By taking n→ +∞, we get |d(x, S(x, y))| = 0, which is contradiction so that x = S(x, y). Now

u2 = d(y, S(y, x)) - sd(y, y2n+2) + sd(y2n+2, S(y, x))

- sd(y, y2n+2) + sd(T (y2n+1, x2n+1), S(y, x))

- sd(y, y2n+2) +
s ∝ (d(y2n+1, y) + d(x2n+1, x))

2
+

sβd(y2n+1, T (y2n+1, x2n+1))d(y, S(y, x))

d(y2n+1, S(y, x)) + d(y, T (y2n+1, x2n+1)) + d(y2n+1, y) + d(x2n+1, x)

- sd(y, y2n+2) +
s ∝ (d(y2n+1, y) + d(x2n+1, x))

2
+

sβu2d(y2n+1, y2n+2)

d(y2n+1, S(y, x)) + d(y, y2n+2) + d(y2n+1, y) + d(x2n+1, x)

which implies that

|u2| ≤ s|d(y, y2n+2)|+ s ∝ |d(y2n+1, y) + d(x2n+1, x)|
2

+
sβ|u2||d(y2n+1, y2n+2)|

|d(y2n+1, S(y, x)) + d(y, y2n+2) + d(y2n+1, y) + d(x2n+1, x)| . (38)

By taking n → +∞, gives us |d(y, S(y, x))| = 0 which is a contradiction so that y = S(y, x). It follows similarly that

x = T (x, y) and y = T (y, x). Hence (x, y) is a common coupled fixed point of S and T. As in Theorem 2.1, the uniqueness

of common coupled fixed point remains a consequence of contraction condition (24). We have obtained the existence and

uniqueness of a unique common coupled fixed point of

DS(x2n, y2n), DS(y2n, x2n), DT (x2n+1, y2n+1), DT (y2n+1, x2n+1) 6= 0 (39)

for all n ∈ N. Now assume that DS(x2n, y2n) = 0 for some n ∈ N. From

d(x2n, 2n+2) + d(x2n, x2n+1) + d(y2n, y2n+1) = 0. (40)

We get x2n = x2n+1 = x2n+2 and y2n = y2n+1. If DS(y2n, x2n) 6= 0, using (1), we deduce

d(y2n+1, y2n+2) = d(S(y2n, x2n), T (y2n+1, x2n+1)) = 0. (41)

That is y2n+1 = y2n+2 (this equality holds also if DS(y2n, x2n) = 0). The equalities

x2n = x2n+1 = x2n+2, y2n = y2n+1 = y2n+2. (42)

This ensure that (x2n+1, y2n+1) is a unique common coupled fixed point of S and T . The same holds if either DS(y2n, x2n) =

0, DT (x2n+1, y2n+1) = 0 or DT (y2n+1, x2n+1) = 0.
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Corollary 2.5. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let S, T : X ×X → X

are mappings satisfying:

d(S(x, y), T (u, v)) -


βd(x,S(x,y))d(u,T (u,v))

d(x,T (u,v))+d(u,S(x,y))+d(x,u)+d(y,v)
if D 6= 0

0 if D = 0,

(43)

for all x, y, u, v ∈ X, where D = d(x, T (u, v)) + d(u, S(x, y)) + d(x, u) + d(y, v) and β is a nonnegative real such that

0 < sβ < 1. Then S and T have a unique common coupled fixed point.

Proof. We can prove this result by applying Theorem 2.4 by setting ∝= 0.

Corollary 2.6. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let the mapping

T : X ×X → X satisfy

d(T (x, y), T (u, v)) -


∝(d(x,u)+d(y,v))

2
+ βd(x,T (x,y))d(u,T (u,v))

d(x,T (u,v))+d(u,T (x,y))+d(x,u)+d(y,v)
if D 6= 0

0 if D = 0

(44)

for all x, y, u, v ∈ X, where D = d(x, T (u, v))+d(u, T (x, y))+d(x, u)+d(y, v) and ∝ β are nonnegative reals with s(∝ +β) <

1. Then T has a unique coupled fixed point.

Proof. We can prove this result by applying Theorem 2.4 by setting S = T .

Corollary 2.7. Let (X, d) be a complete complex valued b-metric space with the coefficient s ≥ 1 and let the mapping

T : X ×X → X satisfy:

d(Tn(x, y), Tn(u, v)) -


∝(d(x,u)+d(y,v))

2
+ βd(x,Tn(x,y))d(u,Tn(u,v))

d(x,Tn(u,v))+d(u,Tn(x,y))+d(x,u)+d(y,v)
if D 6= 0

0 if D = 0

(45)

for all x, y, u, v ∈ X, where D = d(x, Tn(u, v)) + d(u, Tn(x, y)) + d(x, u) + d(y, v) and ∝ β are nonnegative reals with

s(∝ +β) < 1. Then T has a unique coupled fixed point.
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