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Abstract: In this paper we establish again that the nonclassical method accounts for more general results than those obtained by

direct method and Lie’s classical method with the help of a nonlinear parabolic equation with a variable coefficient ut =

uxx+V (t, x)up, p > 1. A perturbation solution for the reduced equation z2ff ′′+ l5f2 +(1 + p)/(1 − p)z2f ′
2

+εzn1+2 = 0

is obtained.
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1. Introduction

The purpose of this work is to ascertain the superiosity of the non-classical method [1, 2] over the Lie’s classical method

[3] and CK-method [5–7]. Nucci and Clarkson [8] have already showed with the help of Fizugh-Nagumo equation that the

nonclassical method is more general than the CK-method.

It may be recalled that the group theoretic explanation of CK-methodd is provided To achive our goal we consider the

nonlinear parabolic equation with a variable coefficient

ut = uxx + V (t, x)up, p > 1. (1)

We show that the solution of (1) by Lie’s classical method only solves its the elliptic counterpart

uxx + V (x)up = 0. (2)

Although the application of CK-method to (1) results in one solution it is the nonclassical method that yields two solutions.

This paper is divided into five sections. In section 2, 3 and 4 we apply the classical method, the nonclassical method and

the CK-method respectively to (1). Section 5 is devoted to the summary of the present work.
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2. Classical Lie Group Method

We now seek Lie group of infinitesimal transformations

u∗ = u+ εU(t, x, u) +O(ε2), t∗ = t+ εT (t, x, u) +O(ε2), x∗ = x+ εX(t, x, u) +O(ε2), (3)

under which (1) is invariant. Then

−pV up−1U − upVxX − upVtT − [Uxx + (2Uxu −Xxx)ux − Txxut

+(Uuu − 2Xxu)u2
x − 2Txuuxut −Xuuu3

x − Tuuu2
xut + (Uu − 2Xx)(ut − V up)

−2Txuxt − 3Xuux(ut − V up)− Tuut(ut − V up)− 2Tuuxuxt] + Ut + (Uu − Tt)ut

−Xtux − Tuu2
t −Xuuxut = 0, (4)

where we have replaced for uxx using (1). Equating the coefficients of uxt, uxuxt,uxut and u2
x in (4) to zero, we get

Tx = Tu = Xu = Uuu = 0 resulting in T = T (t), X = X(x, t) and U = f(x, t)u+ g(x, t). Now (4) reduces to

−pV up−1[uf+g]−upVxX−upVtT − [ufxx+gxx]−ux[2fx−Xxx+Xt]+ut[−T ′+2Xx]+V up[f−2Xx]+[uft+gt] = 0. (5)

Again equating the coefficients of ux, ut and u0 in (5) to zero we have

2fx −Xxx +Xt = 0, (6)

T ′ − 2Xx = 0, (7)

−pV up−1(uf + g)− upVxX − upVtT − ufxx − gxx + V fup − 2upV Xx + uft + gt = 0. (8)

Differentiating (7) with respect to x gives Xxx = 0 so that (6) reduces to

2fx +Xt = 0. (9)

Integrating (7) with respect to x, we get

X(x, t) =
T ′(t)

2
x+ b(t), (10)

where b(t) is function of integration. Inserting (10) in (9) and integrating with respect to x, we find that

f = −1

8
T ′′(t)x2 − 1

2
b′(t)x+ c(t), (11)

where c(t) is another function of integration. Now (8) assumes the form

V up
(
−1

8
T ′′(t)x2 − 1

2
b′(t)x+ c(t)

)
(1− p)− pV up−1g − V upT ′(t)− upVtT

−upVx[
T ′(t)

2
x+ b(t)] +

uT ′′(t)

4
− gxx + u

(
−1

8
T ′′′(t)x2 − 1

2
b′′(t)x+ c′(t)

)
+ gt = 0. (12)

Equating the coefficients of up−1, u and up in (12) to zero, we have

g = 0, (13)

T ′′

4
− T ′′′

8
x2 − b′′

2
x+ c′ = 0, (14)

V

[
−T

′′

8
x2 − b′

2
x+ c

]
(1− p)− V T ′ − VxX − VtT = 0. (15)
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The coefficients of x2, x and x0 in (14) and (15) when equated to zero give

T ′′′ = b′′ = T ′′ + 4c′ = T ′′ = b′ = 0, (16)

[(1− p)c−A]V − (
A

2
x+ b)Vx − (At+B)Vt = 0. (17)

Equations in (16)-(17) are satisfied if b and c are constants,

T = At+B and V =
1

2
(At+B)

[
c(1−p)

A
− 3

2

]
(
A

2
x+ b), (18)

where A,B and v0 are constants. Substituting (18) into (10) and (11) (recall that U = fu), we have

X =
A

2
x+ b, T = At+B, U = cu. (19)

The invariant surface condition dx
X

= dt
T

= du
U

becomes

dx
A
2
x+ b

=
dt

At+B
=
du

cu
. (20)

Integration of equations (20) gives the similarity form of solutions of (̊2.1) as

u = (At+B)c/AF (z), z =
(A
2
x+ b)2

A(At+B)
. (21)

Putting (21) in (3) we get the following ordinary differential equation for the similarity function F (z):

AzF ′′ +A

(
1

2
+ z

)
F ′ + 2z

1
2F p − cF = 0. (22)

Substituting F = c1z
c2 , we have

Ac1c2(c2 − 1)zc2−1 +
A

2
c1c2z

c2−1 +Ac1c2z
c2 + 2cp1z

pc2+
1
2 − cc1zc2 = 0. (23)

Case 1: c2 − 1 = pc2 + 1
2

If we balance the first, second and third terms and the remaining terms equal to zero, we find that

c1 =

[
1

2

(
Ac2(1− c2)− A

2
c2

)] 1
p−1

, (24)

Ac2 = c. (25)

Thus

F =

[
1

2

(
Ac2(1− c2)− A

2
c2

)] 1
p−1

z
3

2(1−p) . (26)

Corresponding solution of (1) is a solution of (1):

u = (At+B)
c
A

[
1

2

(
Ac2(1− c2)− A

2
c2

)] 1
p−1

z
3

2(1−p) , (27)

where V(x, t) is given by

V (x, t) =
1

2
(At+B)

[
c(1−p)

A
− 3

2

]
(
A

2
x+ b). (28)
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Case 2: c2 = pc2 + 1
2
.

Writing F = c1z
c2 in (22) and taking the coefficients of zc2 and the remaining terms equal to zero separately, we have

c2 =
1

2
, p = 0, c1 =

4

2c−A. (29)

Substituting (29) in F = c1z
c2 we finally arrive at

F =
4

2c−Az
1
2 . (30)

Insertion of (30) into (21) and (18) lead to a solution of (1):

u = (At+B)
c
A

4

2c−Az
1/2, (31)

V (x, t) =
1

2
(At+B)

[
c(1−p)

A
− 3

2

]
(
A

2
x+ b). (32)

3. Nonclassical Method

It follows from the invariant surface condition (where we have taken, without loss of generality, T ≡ 1)

ut = U −Xux. (33)

In view of (33), equation (4) reduces to

−pV up−1U − up dV
dt
T − up dV

dx
X −

[
Uxx + (2Uxu −Xxx)ux + (Uuu − 2Xxu)u2

x

−Xuuu3
x + (Uu − 2Xx) [(U −Xux)− V up]− 3Xuux [(U −Xux)− V up]

]
+Ut + Uu(U −Xux)−Xtux −Xuuxut = 0, (34)

Successively equating the coefficients of u0, ux, u
2
x and uxut in (34) to zero we find that

−pup−1V (x)U − upV ′(x)X − Uxx + 2UXx + upV (x)Uu − 2upV (x)Xx + Ut = 0, (35)

−Xt − 2Uxu +Xxx − 2XXx + 3UXu − 3XuV (x)up = 0. (36)

−Uuu + 2Xxu − 3XXu = 0, (37)

Xu = 0. (38)

Again equating the coefficients of up−1 and up in (35) to zero we have

U = 0. (39)

Vt +XV ′(x) + 2V (x)Xx = 0. (40)

Equation (40) leads to

V (x) = v0X
−2. (41)

Case 1: Xt = 0

Substituting (39) in (36), we get

Xxx − 2Xx = 0. (42)
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Now solving (42), we obtain the solution

X = − 1

x
. (43)

On inserting (43), equation (41) leads to

V (x) = v0x
2. (44)

Substituting (39), (43) and T ≡ 1, the invariant surface condition for z, namely dx
X

= dy
Y

= dz
Z

becomes

− xdx = dt =
du

0
. (45)

Integration of equations (45) gives a similarity solution of (1) in the form

u = F (z), (46)

z = t+
x2

2
, (47)

Substitution of (47) in (1) yields:

F ′′ + v0F
p = 0. (48)

Equation (48) can be modified into

F ′
2

+
v0

1 + p
F p+1 = 0. (49)

Now solving (49), we obtain

F (z) =

(
1− p

2

[(
v0

−1− p

)1/2

z + C2

])2/(1−p)

, (50)

where C2 is an arbitrary constant. Thus the similarity solution of (1) in this case is

u(x, t) =

(
1− p

2

[(
v0

−1− p

)1/2

(t+
x2

2
) + C2

])2/(1−p)

, (51)

z(x, t) = t+
x2

2
.

Case 2: Xt 6= 0

Substituting (39) in (36), we get

Xt −Xxx + 2Xx = 0. (52)

Now solving (52), we obtain the solution

X = − x
2t
. (53)

On inserting (53), equation (40) leads to

V (x) = tx−4. (54)

Substituting (39), (53) and T ≡ 1, the invariant surface condition for z, namely dx
X

= dy
Y

= dz
Z

becomes

2tdx

x
=
dt

1
=
du

0
. (55)

Integration of equations (55) gives a similarity solution of (1) in the form

u = F (z), (56)

z = tx−2, (57)

Substitution of (57) in (1) yields:

4z2F ′′ + (6z − 1)F ′ + zF p = 0. (58)

205



Similarity Solution of Semilinear Parabolic Equations with Variable Coefficients

4. Direct Similarity Method

We transform (1) through

u = [v(x, t)]2/(1−p) , (59)

to the following Clarkson and Kruskal [6]. We seek solutions of (59) in the form

v(x, t) = α(x, t) + β(x, t)f(z), z = z(x, t). (60)

We substitute (59) in (1) and require the resulting equation in the following form of an ordinary differential equation

governing the function f(z):

Λ1(z) + Λ2(z)f ′ + Λ3(z)f + Λ4(z)ff ′ + Λ5(z)f2 + Λ6(z)f ′
2

+ Λ7(z)f ′′ + ff ′′ = 0. (61)

The functions Λn(z), n = 1, 2, · · · , 7 are introduced according to

−ααt +
1 + p

1− pα
2
x + ααxx +

(1− p)
2

V = β2z2xΛ1(z), (62)

−αβzt +
2(1 + p)

(1− P )
βαxzx + αβzxx + 2αβxzx = β2z2xΛ2(z), (63)

−αβt − βαt +
2(1 + p)

1− p αxβx + αβxx + βαxx = β2z2xΛ3(z), (64)

−βzt +
2(1 + p)

1− p βxzx + βzxx + 2βxzx = βz2xΛ4(z), (65)

−ββt +
1 + p

1− pβ
2
x + ββxx = β2z2xΛ5(z), (66)

1 + p

1− pβ
2z2x = β2z2xΛ6(z), (67)

α = βΛ7(z). (68)

Remark 4.1. If α(x, t) is to be obtained from an equation of the form α(x, t) = α̃(x, t) + β(x, t)Λ(z) , then we may set

Λ(z) = 0.

Remark 4.2. If β(x, t) is given by an equation of the form β(x, t) = β̃(x, t)Λ(z), then we may choose Λ(z) = 1.

Remark 4.3. If the equation Λ(z) = z̃(x, t) is to be solved for z, then we may write Λ(z) = z.

In view of Remark 4.1, we satisfy (68) by taking α = Λ7 = 0. And equation (67) simply gives Λ6 = 1+p
1−p . With α = 0,

equations (63), (64) and (62) become Λ2 = Λ3 = 0 and

1− p
2

V (x) = β2z2xΛ1(z). (69)

We assume that

β = β0e
σx+tht, z = z0e

φx+µt. (70)

Evidently z lies in the interval [l, 0) when x ∈ [0,∞) and t ∈ [0,∞). Equations (65), (66) and (69), requires that Λ5 is

proportional to z−2 , Λ4 is proportional to z−1 and Λ1 is proportional to zn1 respectively we indeed find that

Λ5 = l5z
−2, l5 = − θ

φ2
+

2

1− p
σ2

φ2
, (71)

Λ4 = l4z
−1, l4 = − µ

φ2
+

4

1− p
σ

φ
+ 1, (72)

Λ1 = l1z
n1 , V (x, t) =

2

1− pβ
2
0z
n1+2
0 φ2l1e

2(σx+θt)e(2+n1)(φx+µt). (73)
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Substituting for Λn(z), n = 1, 2, . . . , 7, equation (61) is

z2ff ′′ +
1 + p

1− pz
2f ′

2

+ l5f
2 + l4zff

′ + l1z
n1+2 = 0. (74)

On inserting f(z) = F (θ), θ = logz , equation (74) transforms into

FF ′′ − p+ 1

p− 1
F ′

2

+ (l4 − 1)FF ′ + l5F
2 + l1e

(n1+2)θ = 0. (75)

The condition f(0) is finite corresponds to F (−∞) is finite. We transform (75) through F (θ) = e
n1+2

2
θG(θ) , l1 = ε to the

autonomous equation

[
−2(n1 + 2)

p− 1
− 1 + l4

]
GG′ +GG′′ +

[
−(n1 + 2)2

2(p− 1)
+ (l4 − 1)

n1 + 2

2
+ l5

]
G2 − p+ 1

p− 1
G′

2

+ ε = 0. (76)

It is clear that G(θ) → ∞ as θ → −∞ since n1 > 0. Writing G = G0(z) + εG1(z) in (76) and equating the coefficients of

εi, i = 0, 1 to 0, we have

[
−2(n1 + 2)

p− 1
− 1 + l4

]
G0G

′
0 +G0G

′′
0 +

[
−(n1 + 2)2

2(p− 1)
+ (l4 − 1)

n1 + 2

2
+ l5

]
G2

0 −
p+ 1

p− 1
G′

2

0 = 0, (77)[
−2(n1 + 2)

p− 1
− 1 + l4

] (
G0G

′
1 +G1G

′
0

)
+G0G

′′
1 +G1G

′′
0

+2

[
−(n1 + 2)2

2(p− 1)
+ (l4 − 1)

n1 + 2

2
+ l5

]
G0G1 + 2

p+ 1

p− 1
G′0G

′
1 + 1 = 0. (78)

It is easily verified that a solution of (77) is

G0(z) = p1e
kθ, (79)

where k is a negetive root of

[
1 +

p+ 1

p− 1

]
k2 +

[
−2(n1 + 2)

p− 1
− 1 + l4

]
k +

[
−(n1 + 2)2

2(p− 1)
+ (l4 − 1)

n1 + 2

2
+ l5

]
= 0, (80)

and p1 > 0. Solving (80) we find that

k =
(1− p)

4

[(
2(n1 + 2)

p− 1
+ 1− l4

)
±
(

(1− l4)2 − 8l5
1− p

)1/2
]
. (81)

Then a solution of (78) is

G1(z) = p2e
−kθ, (82)

where

p2 = − 1

4p
p−1

p0p21 + 2
[
(n1+2)2

2(1−p) + (n1+2)
2

(l4 − 1) + l5
]
p0
. (83)

The corresponding solution of (76) is

G(θ) = p1e
kθ + εp2e

−kθ, (84)

where p1 is an arbitrary constant. Then

F (θ) = p1e
k+

(n1+2)
2

θ + εp2e
−k+ (n1+2)

2
θ. (85)
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On inserting f(z) = F (θ), θ = log z into (85), we have

f(z) = p1z
k+

(n1+2)
2 + εp2z

−k+ (n1+2)
2 . (86)

Putting α = 0, (86) and (70 in (59) we get a solution of (1):

u =
[
β0e

σ(x+t)
]2/(1−p)(

p1z
k+1+

n1
2

0 exp
[
(φx+ µt)(k + 1 +

n1

2
)
]

+ εp2z
−k+1+

n1
2

0 exp
[
(φx+ µt)(−k + 1 +

n1

2
)
]) 2

1−p
. (87)

for

V (x, t) =
2

1− pβ
2
0z
n1+2
0 φ2l1e

2(σx+θt)e(2+n1)(φx+µt). (88)

5. Results and Conclusions

The following solution

u(x) =

[
c2

2v0

]1/(p−1)

(A/2x+ b0)2, (89)

of (2), when the variable coefficient

V (x) = v0(
Ax

2
+ b)−2p, (90)

is recovered from the classes of solutions of the nonlinear parabolic equation with the variable coefficient

ut = ∆u+ v0(
Ax

2
+ b)−2pup, (x, t) ∈ Rn × (0,∞). (91)

By applying the Lie group of infinitesimal transformations to (91). In yet another study, we employed the direct method of

Clarkson and Kruskal [6] to (91) to replace it by a nonlinear ordinary differential equation

z2ff ′′ + l5f
2 +

1 + p

1− pz
2f ′

2

+ l1z
n1+2 = 0. (92)

Perturbative solutions of (92) are derived and then the corresponding intermediate asymptotics of (91) is presented as

u(x, t) =
[
β0e

σ(x+t)
]2/(1−p)(

p1z
k+1+

n1
2

0 exp
[
(φx+ µt)(k + 1 +

n1

2
)
]

+ εp2z
−k+1+

n1
2

0 exp
[
(φx+ µt)(−k + 1 +

n1

2
)
]) 2

1−p
,

(93)

for

V (x, t) =
2

1− pβ
2
0z
n1+2
0 φ2l1e

2(σx+θt)e(2+n1)(φx+µt). (94)

According to Barenblatt [2] similarity solutions of (91) play the role of intermediate asymptotics of the general solutions of

classes of initial value problems.
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