International Journal of Mathematics And its Applications

Similarity Solution of Semilinear Parabolic Equations with Variable Coefficients

Research Article

S.Padmasekaran ${ }^{1}$, S.Rajeswari ${ }^{1}$ and G.Sivagami ${ }^{2 *}$
1 Department of Mathematics, Periyar University, Salem, Tamilnadu, India.
2 Department of Mathematics, SBM College of Engineering and Technology, Dindigul, Tamilnadu, India.

Abstract

In this paper we establish again that the nonclassical method accounts for more general results than those obtained by direct method and Lie's classical method with the help of a nonlinear parabolic equation with a variable coefficient $u_{t}=$ $u_{x x}+V(t, x) u^{p}, p>1$. A perturbation solution for the reduced equation $z^{2} f f^{\prime \prime}+l_{5} f^{2}+(1+p) /(1-p) z^{2} f^{\prime 2}+\epsilon z^{n_{1}+2}=0$ is obtained.

MSC: $\quad 34 \mathrm{C} 14$.

Keywords: Lie's classical method, Nonclassical method, Symmetries.
(C) JS Publication.

1. Introduction

The purpose of this work is to ascertain the superiosity of the non-classical method [1, 2] over the Lie's classical method [3] and CK-method [5-7]. Nucci and Clarkson [8] have already showed with the help of Fizugh-Nagumo equation that the nonclassical method is more general than the CK-method.

It may be recalled that the group theoretic explanation of CK-methodd is provided To achive our goal we consider the nonlinear parabolic equation with a variable coefficient

$$
\begin{equation*}
u_{t}=u_{x x}+V(t, x) u^{p}, \quad p>1 . \tag{1}
\end{equation*}
$$

We show that the solution of (1) by Lie's classical method only solves its the elliptic counterpart

$$
\begin{equation*}
u_{x x}+V(x) u^{p}=0 . \tag{2}
\end{equation*}
$$

Although the application of CK-method to (1) results in one solution it is the nonclassical method that yields two solutions.

This paper is divided into five sections. In section 2, 3 and 4 we apply the classical method, the nonclassical method and the CK-method respectively to (1). Section 5 is devoted to the summary of the present work.

[^0]
2. Classical Lie Group Method

We now seek Lie group of infinitesimal transformations

$$
\begin{equation*}
u^{*}=u+\epsilon U(t, x, u)+O\left(\epsilon^{2}\right), \quad t^{*}=t+\epsilon T(t, x, u)+O\left(\epsilon^{2}\right), \quad x^{*}=x+\epsilon X(t, x, u)+O\left(\epsilon^{2}\right), \tag{3}
\end{equation*}
$$

under which (1) is invariant. Then

$$
\begin{array}{r}
-p V u^{p-1} U-u^{p} V_{x} X-u^{p} V_{t} T-\left[U_{x x}+\left(2 U_{x u}-X_{x x}\right) u_{x}-T_{x x} u_{t}\right. \\
+\left(U_{u u}-2 X_{x u}\right) u_{x}^{2}-2 T_{x u} u_{x} u_{t}-X_{u u} u_{x}^{3}-T_{u u} u_{x}^{2} u_{t}+\left(U_{u}-2 X_{x}\right)\left(u_{t}-V u^{p}\right) \\
\left.-2 T_{x} u_{x t}-3 X_{u} u_{x}\left(u_{t}-V u^{p}\right)-T_{u} u_{t}\left(u_{t}-V u^{p}\right)-2 T_{u} u_{x} u_{x t}\right]+U_{t}+\left(U_{u}-T_{t}\right) u_{t} \\
-X_{t} u_{x}-T_{u} u_{t}^{2}-X_{u} u_{x} u_{t}=0, \tag{4}
\end{array}
$$

where we have replaced for $u_{x x}$ using (1). Equating the coefficients of $u_{x t}, u_{x} u_{x t}, u_{x} u_{t}$ and u_{x}^{2} in (4) to zero, we get $T_{x}=T_{u}=X_{u}=U_{u u}=0$ resulting in $T=T(t), X=X(x, t)$ and $U=f(x, t) u+g(x, t)$. Now (4) reduces to

$$
\begin{equation*}
-p V u^{p-1}[u f+g]-u^{p} V_{x} X-u^{p} V_{t} T-\left[u f_{x x}+g_{x x}\right]-u_{x}\left[2 f_{x}-X_{x x}+X_{t}\right]+u_{t}\left[-T^{\prime}+2 X_{x}\right]+V u^{p}\left[f-2 X_{x}\right]+\left[u f_{t}+g_{t}\right]=0 . \tag{5}
\end{equation*}
$$

Again equating the coefficients of u_{x}, u_{t} and u^{0} in (5) to zero we have

$$
\begin{align*}
2 f_{x}-X_{x x}+X_{t} & =0, \tag{6}\\
T^{\prime}-2 X_{x} & =0, \tag{7}\\
-p V u^{p-1}(u f+g)-u^{p} V_{x} X-u^{p} V_{t} T-u f_{x x}-g_{x x}+V f u^{p}-2 u^{p} V X_{x}+u f_{t}+g_{t} & =0 . \tag{8}
\end{align*}
$$

Differentiating (7) with respect to x gives $X_{x x}=0$ so that (6) reduces to

$$
\begin{equation*}
2 f_{x}+X_{t}=0 \tag{9}
\end{equation*}
$$

Integrating (7) with respect to x, we get

$$
\begin{equation*}
X(x, t)=\frac{T^{\prime}(t)}{2} x+b(t) \tag{10}
\end{equation*}
$$

where $b(t)$ is function of integration. Inserting (10) in (9) and integrating with respect to x, we find that

$$
\begin{equation*}
f=-\frac{1}{8} T^{\prime \prime}(t) x^{2}-\frac{1}{2} b^{\prime}(t) x+c(t), \tag{11}
\end{equation*}
$$

where $c(t)$ is another function of integration. Now (8) assumes the form

$$
\begin{gather*}
V u^{p}\left(-\frac{1}{8} T^{\prime \prime}(t) x^{2}-\frac{1}{2} b^{\prime}(t) x+c(t)\right)(1-p)-p V u^{p-1} g-V u^{p} T^{\prime}(t)-u^{p} V_{t} T \\
-u^{p} V_{x}\left[\frac{T^{\prime}(t)}{2} x+b(t)\right]+\frac{u T^{\prime \prime}(t)}{4}-g_{x x}+u\left(-\frac{1}{8} T^{\prime \prime \prime}(t) x^{2}-\frac{1}{2} b^{\prime \prime}(t) x+c^{\prime}(t)\right)+g_{t}=0 . \tag{12}
\end{gather*}
$$

Equating the coefficients of u^{p-1}, u and u^{p} in (12) to zero, we have

$$
\begin{align*}
g & =0 \tag{13}\\
\frac{T^{\prime \prime}}{4}-\frac{T^{\prime \prime \prime}}{8} x^{2}-\frac{b^{\prime \prime}}{2} x+c^{\prime} & =0 \tag{14}\\
V\left[-\frac{T^{\prime \prime}}{8} x^{2}-\frac{b^{\prime}}{2} x+c\right](1-p)-V T^{\prime}-V_{x} X-V_{t} T & =0 . \tag{15}
\end{align*}
$$

The coefficients of x^{2}, x and x^{0} in (14) and (15) when equated to zero give

$$
\begin{align*}
T^{\prime \prime \prime}=b^{\prime \prime}=T^{\prime \prime}+4 c^{\prime}=T^{\prime \prime}=b^{\prime} & =0 \tag{16}\\
{[(1-p) c-A] V-\left(\frac{A}{2} x+b\right) V_{x}-(A t+B) V_{t} } & =0 \tag{17}
\end{align*}
$$

Equations in (16)-(17) are satisfied if b and c are constants,

$$
\begin{equation*}
T=A t+B \quad \text { and } \quad V=\frac{1}{2}(A t+B)^{\left[\frac{c(1-p)}{A}-\frac{3}{2}\right]}\left(\frac{A}{2} x+b\right) \tag{18}
\end{equation*}
$$

where A, B and v_{0} are constants. Substituting (18) into (10) and (11) (recall that $U=f u$), we have

$$
\begin{equation*}
X=\frac{A}{2} x+b, \quad T=A t+B, \quad U=c u \tag{19}
\end{equation*}
$$

The invariant surface condition $\frac{d x}{X}=\frac{d t}{T}=\frac{d u}{U}$ becomes

$$
\begin{equation*}
\frac{d x}{\frac{A}{2} x+b}=\frac{d t}{A t+B}=\frac{d u}{c u} \tag{20}
\end{equation*}
$$

Integration of equations (20) gives the similarity form of solutions of (2.1) as

$$
\begin{equation*}
u=(A t+B)^{c / A} F(z), \quad z=\frac{\left(\frac{A}{2} x+b\right)^{2}}{A(A t+B)} \tag{21}
\end{equation*}
$$

Putting (21) in (3) we get the following ordinary differential equation for the similarity function $F(z)$:

$$
\begin{equation*}
A z F^{\prime \prime}+A\left(\frac{1}{2}+z\right) F^{\prime}+2 z^{\frac{1}{2}} F^{p}-c F=0 \tag{22}
\end{equation*}
$$

Substituting $F=c_{1} z^{c_{2}}$, we have

$$
\begin{equation*}
A c_{1} c_{2}\left(c_{2}-1\right) z^{c_{2}-1}+\frac{A}{2} c_{1} c_{2} z^{c_{2}-1}+A c_{1} c_{2} z^{c_{2}}+2 c_{1}^{p} z^{p c_{2}+\frac{1}{2}}-c c_{1} z^{c_{2}}=0 \tag{23}
\end{equation*}
$$

Case 1: $c_{2}-1=p c_{2}+\frac{1}{2}$
If we balance the first, second and third terms and the remaining terms equal to zero, we find that

$$
\begin{align*}
c_{1} & =\left[\frac{1}{2}\left(A c_{2}\left(1-c_{2}\right)-\frac{A}{2} c_{2}\right)\right]^{\frac{1}{p-1}} \tag{24}\\
A c_{2} & =c \tag{25}
\end{align*}
$$

Thus

$$
\begin{equation*}
F=\left[\frac{1}{2}\left(A c_{2}\left(1-c_{2}\right)-\frac{A}{2} c_{2}\right)\right]^{\frac{1}{p-1}} z^{\frac{3}{2(1-p)}} \tag{26}
\end{equation*}
$$

Corresponding solution of (1) is a solution of (1):

$$
\begin{equation*}
u=(A t+B)^{\frac{c}{A}}\left[\frac{1}{2}\left(A c_{2}\left(1-c_{2}\right)-\frac{A}{2} c_{2}\right)\right]^{\frac{1}{p-1}} z^{\frac{3}{2(1-p)}} \tag{27}
\end{equation*}
$$

where $V(x, t)$ is given by

$$
\begin{equation*}
V(x, t)=\frac{1}{2}(A t+B)^{\left[\frac{c(1-p)}{A}-\frac{3}{2}\right]}\left(\frac{A}{2} x+b\right) \tag{28}
\end{equation*}
$$

Case 2: $c_{2}=p c_{2}+\frac{1}{2}$.
Writing $F=c_{1} z^{c_{2}}$ in (22) and taking the coefficients of $z^{c_{2}}$ and the remaining terms equal to zero separately, we have

$$
\begin{equation*}
c_{2}=\frac{1}{2}, \quad p=0, \quad c_{1}=\frac{4}{2 c-A} . \tag{29}
\end{equation*}
$$

Substituting (29) in $F=c_{1} z^{c_{2}}$ we finally arrive at

$$
\begin{equation*}
F=\frac{4}{2 c-A} z^{\frac{1}{2}} . \tag{30}
\end{equation*}
$$

Insertion of (30) into (21) and (18) lead to a solution of (1):

$$
\begin{align*}
u & =(A t+B)^{\frac{c}{A}} \frac{4}{2 c-A} z^{1 / 2}, \tag{31}\\
V(x, t) & =\frac{1}{2}(A t+B)^{\left[\frac{c(1-p)}{A}-\frac{3}{2}\right]}\left(\frac{A}{2} x+b\right) . \tag{32}
\end{align*}
$$

3. Nonclassical Method

It follows from the invariant surface condition (where we have taken, without loss of generality, $T \equiv 1$)

$$
\begin{equation*}
u_{t}=U-X u_{x} . \tag{33}
\end{equation*}
$$

In view of (33), equation (4) reduces to

$$
\begin{array}{r}
-p V u^{p-1} U-u^{p} \frac{d V}{d t} T-u^{p} \frac{d V}{d x} X-\left[U_{x x}+\left(2 U_{x u}-X_{x x}\right) u_{x}+\left(U_{u u}-2 X_{x u}\right) u_{x}^{2}\right. \\
\left.-X_{u u} u_{x}^{3}+\left(U_{u}-2 X_{x}\right)\left[\left(U-X u_{x}\right)-V u^{p}\right]-3 X_{u} u_{x}\left[\left(U-X u_{x}\right)-V u^{p}\right]\right] \\
+U_{t}+U_{u}\left(U-X u_{x}\right)-X_{t} u_{x}-X_{u} u_{x} u_{t}=0, \tag{34}
\end{array}
$$

Successively equating the coefficients of u^{0}, u_{x}, u_{x}^{2} and $u_{x} u_{t}$ in (34) to zero we find that

$$
\begin{align*}
-p u^{p-1} V(x) U-u^{p} V^{\prime}(x) X-U_{x x}+2 U X_{x}+u^{p} V(x) U_{u}-2 u^{p} V(x) X_{x}+U_{t} & =0, \tag{35}\\
-X_{t}-2 U_{x u}+X_{x x}-2 X X_{x}+3 U X_{u}-3 X_{u} V(x) u^{p} & =0 . \tag{36}\\
-U_{u u}+2 X_{x u}-3 X X_{u} & =0, \tag{37}\\
X_{u} & =0 . \tag{38}
\end{align*}
$$

Again equating the coefficients of u^{p-1} and u^{p} in (35) to zero we have

$$
\begin{align*}
U & =0 \tag{39}\\
V_{t}+X V^{\prime}(x)+2 V(x) X_{x} & =0 \tag{40}
\end{align*}
$$

Equation (40) leads to

$$
\begin{equation*}
V(x)=v_{0} X^{-2} \tag{41}
\end{equation*}
$$

Case 1: $X_{t}=0$
Substituting (39) in (36), we get

$$
\begin{equation*}
X_{x x}-2 X_{x}=0 . \tag{42}
\end{equation*}
$$

Now solving (42), we obtain the solution

$$
\begin{equation*}
X=-\frac{1}{x} \tag{43}
\end{equation*}
$$

On inserting (43), equation (41) leads to

$$
\begin{equation*}
V(x)=v_{0} x^{2} \tag{44}
\end{equation*}
$$

Substituting (39), (43) and $T \equiv 1$, the invariant surface condition for z, namely $\frac{d x}{X}=\frac{d y}{Y}=\frac{d z}{Z}$ becomes

$$
\begin{equation*}
-x d x=d t=\frac{d u}{0} \tag{45}
\end{equation*}
$$

Integration of equations (45) gives a similarity solution of (1) in the form

$$
\begin{align*}
& u=F(z) \tag{46}\\
& z=t+\frac{x^{2}}{2} \tag{47}
\end{align*}
$$

Substitution of (47) in (1) yields:

$$
\begin{equation*}
F^{\prime \prime}+v_{0} F^{p}=0 \tag{48}
\end{equation*}
$$

Equation (48) can be modified into

$$
\begin{equation*}
F^{\prime^{2}}+\frac{v_{0}}{1+p} F^{p+1}=0 \tag{49}
\end{equation*}
$$

Now solving (49), we obtain

$$
\begin{equation*}
F(z)=\left(\frac{1-p}{2}\left[\left(\frac{v_{0}}{-1-p}\right)^{1 / 2} z+C_{2}\right]\right)^{2 /(1-p)} \tag{50}
\end{equation*}
$$

where C_{2} is an arbitrary constant. Thus the similarity solution of (1) in this case is

$$
\begin{align*}
u(x, t) & =\left(\frac{1-p}{2}\left[\left(\frac{v_{0}}{-1-p}\right)^{1 / 2}\left(t+\frac{x^{2}}{2}\right)+C_{2}\right]\right)^{2 /(1-p)} \tag{51}\\
z(x, t) & =t+\frac{x^{2}}{2}
\end{align*}
$$

Case 2: $X_{t} \neq 0$
Substituting (39) in (36), we get

$$
\begin{equation*}
X_{t}-X_{x x}+2 X_{x}=0 \tag{52}
\end{equation*}
$$

Now solving (52), we obtain the solution

$$
\begin{equation*}
X=-\frac{x}{2 t} \tag{53}
\end{equation*}
$$

On inserting (53), equation (40) leads to

$$
\begin{equation*}
V(x)=t x^{-4} \tag{54}
\end{equation*}
$$

Substituting (39), (53) and $T \equiv 1$, the invariant surface condition for z, namely $\frac{d x}{X}=\frac{d y}{Y}=\frac{d z}{Z}$ becomes

$$
\begin{equation*}
\frac{2 t d x}{x}=\frac{d t}{1}=\frac{d u}{0} \tag{55}
\end{equation*}
$$

Integration of equations (55) gives a similarity solution of (1) in the form

$$
\begin{align*}
& u=F(z) \tag{56}\\
& z=t x^{-2} \tag{57}
\end{align*}
$$

Substitution of (57) in (1) yields:

$$
\begin{equation*}
4 z^{2} F^{\prime \prime}+(6 z-1) F^{\prime}+z F^{p}=0 \tag{58}
\end{equation*}
$$

4. Direct Similarity Method

We transform (1) through

$$
\begin{equation*}
u=[v(x, t)]^{2 /(1-p)} \tag{59}
\end{equation*}
$$

to the following Clarkson and Kruskal [6]. We seek solutions of (59) in the form

$$
\begin{equation*}
v(x, t)=\alpha(x, t)+\beta(x, t) f(z), \quad z=z(x, t) \tag{60}
\end{equation*}
$$

We substitute (59) in (1) and require the resulting equation in the following form of an ordinary differential equation governing the function $f(z)$:

$$
\begin{equation*}
\Lambda_{1}(z)+\Lambda_{2}(z) f^{\prime}+\Lambda_{3}(z) f+\Lambda_{4}(z) f f^{\prime}+\Lambda_{5}(z) f^{2}+\Lambda_{6}(z) f^{\prime^{2}}+\Lambda_{7}(z) f^{\prime \prime}+f f^{\prime \prime}=0 \tag{61}
\end{equation*}
$$

The functions $\Lambda_{n}(z), n=1,2, \cdots, 7$ are introduced according to

$$
\begin{align*}
-\alpha \alpha_{t}+\frac{1+p}{1-p} \alpha_{x}^{2}+\alpha \alpha_{x x}+\frac{(1-p)}{2} V & =\beta^{2} z_{x}^{2} \Lambda_{1}(z) \tag{62}\\
-\alpha \beta z_{t}+\frac{2(1+p)}{(1-P)} \beta \alpha_{x} z_{x}+\alpha \beta z_{x x}+2 \alpha \beta_{x} z_{x} & =\beta^{2} z_{x}^{2} \Lambda_{2}(z) \tag{63}\\
-\alpha \beta_{t}-\beta \alpha_{t}+\frac{2(1+p)}{1-p} \alpha_{x} \beta_{x}+\alpha \beta_{x x}+\beta \alpha_{x x} & =\beta^{2} z_{x}^{2} \Lambda_{3}(z) \tag{64}\\
-\beta z_{t}+\frac{2(1+p)}{1-p} \beta_{x} z_{x}+\beta z_{x x}+2 \beta_{x} z_{x} & =\beta z_{x}^{2} \Lambda_{4}(z) \tag{65}\\
-\beta \beta_{t}+\frac{1+p}{1-p} \beta_{x}^{2}+\beta \beta_{x x} & =\beta^{2} z_{x}^{2} \Lambda_{5}(z) \tag{66}\\
\frac{1+p}{1-p} \beta^{2} z_{x}^{2} & =\beta^{2} z_{x}^{2} \Lambda_{6}(z) \tag{67}\\
\alpha & =\beta \Lambda_{7}(z) \tag{68}
\end{align*}
$$

Remark 4.1. If $\alpha(x, t)$ is to be obtained from an equation of the form $\alpha(x, t)=\tilde{\alpha}(x, t)+\beta(x, t) \Lambda(z)$, then we may set $\Lambda(z)=0$.

Remark 4.2. If $\beta(x, t)$ is given by an equation of the form $\beta(x, t)=\tilde{\beta}(x, t) \Lambda(z)$, then we may choose $\Lambda(z)=1$.

Remark 4.3. If the equation $\Lambda(z)=\tilde{z}(x, t)$ is to be solved for z, then we may write $\Lambda(z)=z$.
In view of Remark 4.1, we satisfy (68) by taking $\alpha=\Lambda_{7}=0$. And equation (67) simply gives $\Lambda_{6}=\frac{1+p}{1-p}$. With $\alpha=0$, equations (63), (64) and (62) become $\Lambda_{2}=\Lambda_{3}=0$ and

$$
\begin{equation*}
\frac{1-p}{2} V(x)=\beta^{2} z_{x}^{2} \Lambda_{1}(z) \tag{69}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
\beta=\beta_{0} e^{\sigma x+t h t}, \quad z=z_{0} e^{\phi x+\mu t} \tag{70}
\end{equation*}
$$

Evidently z lies in the interval $[l, 0)$ when $x \in[0, \infty)$ and $t \in[0, \infty)$. Equations (65), (66) and (69), requires that Λ_{5} is proportional to z^{-2}, Λ_{4} is proportional to z^{-1} and Λ_{1} is proportional to $z^{n_{1}}$ respectively we indeed find that

$$
\begin{array}{ll}
\Lambda_{5}=l_{5} z^{-2}, \quad l_{5}=-\frac{\theta}{\phi^{2}}+\frac{2}{1-p} \frac{\sigma^{2}}{\phi^{2}} \\
\Lambda_{4}=l_{4} z^{-1}, \quad l_{4}=-\frac{\mu}{\phi^{2}}+\frac{4}{1-p} \frac{\sigma}{\phi}+1 \\
\Lambda_{1}=l_{1} z^{n_{1}}, \quad V(x, t)=\frac{2}{1-p} \beta_{0}^{2} z_{0}^{n_{1}+2} \phi^{2} l_{1} e^{2(\sigma x+\theta t)} e^{\left(2+n_{1}\right)(\phi x+\mu t)} \tag{73}
\end{array}
$$

Substituting for $\Lambda_{n}(z), n=1,2, \ldots, 7$, equation (61) is

$$
\begin{equation*}
z^{2} f f^{\prime \prime}+\frac{1+p}{1-p} z^{2} f^{\prime^{2}}+l_{5} f^{2}+l_{4} z f f^{\prime}+l_{1} z^{n_{1}+2}=0 \tag{74}
\end{equation*}
$$

On inserting $f(z)=F(\theta), \theta=\log z$, equation (74) transforms into

$$
\begin{equation*}
F F^{\prime \prime}-\frac{p+1}{p-1}{F^{\prime^{2}}}^{2}+\left(l_{4}-1\right) F F^{\prime}+l_{5} F^{2}+l_{1} e^{\left(n_{1}+2\right) \theta}=0 \tag{75}
\end{equation*}
$$

The condition $f(0)$ is finite corresponds to $F(-\infty)$ is finite. We transform (75) through $F(\theta)=e^{\frac{n_{1}+2}{2} \theta} G(\theta), l_{1}=\epsilon$ to the autonomous equation

$$
\begin{equation*}
\left[\frac{-2\left(n_{1}+2\right)}{p-1}-1+l_{4}\right] G G^{\prime}+G G^{\prime \prime}+\left[\frac{-\left(n_{1}+2\right)^{2}}{2(p-1)}+\left(l_{4}-1\right) \frac{n_{1}+2}{2}+l_{5}\right] G^{2}-\frac{p+1}{p-1} G^{\prime^{2}}+\epsilon=0 \tag{76}
\end{equation*}
$$

It is clear that $G(\theta) \rightarrow \infty$ as $\theta \rightarrow-\infty$ since $n_{1}>0$. Writing $G=G_{0}(z)+\epsilon G_{1}(z)$ in (76) and equating the coefficients of $\epsilon^{i}, i=0,1$ to 0 , we have

$$
\begin{align*}
{\left[\frac{-2\left(n_{1}+2\right)}{p-1}-1+l_{4}\right] G_{0} G_{0}^{\prime}+G_{0} G_{0}^{\prime \prime}+\left[\frac{-\left(n_{1}+2\right)^{2}}{2(p-1)}+\left(l_{4}-1\right) \frac{n_{1}+2}{2}+l_{5}\right] G_{0}^{2}-\frac{p+1}{p-1} G_{0}^{\prime^{2}} } & =0 \tag{77}\\
{\left[\frac{-2\left(n_{1}+2\right)}{p-1}-1+l_{4}\right]\left(G_{0} G_{1}^{\prime}+G_{1} G_{0}^{\prime}\right)+G_{0} G_{1}^{\prime \prime}+G_{1} G_{0}^{\prime \prime} } & \\
+2\left[\frac{-\left(n_{1}+2\right)^{2}}{2(p-1)}+\left(l_{4}-1\right) \frac{n_{1}+2}{2}+l_{5}\right] G_{0} G_{1}+2 \frac{p+1}{p-1} G_{0}^{\prime} G_{1}^{\prime}+1 & =0 \tag{78}
\end{align*}
$$

It is easily verified that a solution of (77) is

$$
\begin{equation*}
G_{0}(z)=p_{1} e^{k \theta} \tag{79}
\end{equation*}
$$

where k is a negetive root of

$$
\begin{equation*}
\left[1+\frac{p+1}{p-1}\right] k^{2}+\left[\frac{-2\left(n_{1}+2\right)}{p-1}-1+l_{4}\right] k+\left[\frac{-\left(n_{1}+2\right)^{2}}{2(p-1)}+\left(l_{4}-1\right) \frac{n_{1}+2}{2}+l_{5}\right]=0 \tag{80}
\end{equation*}
$$

and $p_{1}>0$. Solving (80) we find that

$$
\begin{equation*}
k=\frac{(1-p)}{4}\left[\left(\frac{2\left(n_{1}+2\right)}{p-1}+1-l_{4}\right) \pm\left(\left(1-l_{4}\right)^{2}-\frac{8 l_{5}}{1-p}\right)^{1 / 2}\right] \tag{81}
\end{equation*}
$$

Then a solution of (78) is

$$
\begin{equation*}
G_{1}(z)=p_{2} e^{-k \theta} \tag{82}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{2}=-\frac{1}{\frac{4 p}{p-1} p_{0} p_{1}^{2}+2\left[\frac{\left(n_{1}+2\right)^{2}}{2(1-p)}+\frac{\left(n_{1}+2\right)}{2}\left(l_{4}-1\right)+l_{5}\right] p_{0}} \tag{83}
\end{equation*}
$$

The corresponding solution of (76) is

$$
\begin{equation*}
G(\theta)=p_{1} e^{k \theta}+\epsilon p_{2} e^{-k \theta} \tag{84}
\end{equation*}
$$

where p_{1} is an arbitrary constant. Then

$$
\begin{equation*}
F(\theta)=p_{1} e^{k+\frac{\left(n_{1}+2\right)}{2} \theta}+\epsilon p_{2} e^{-k+\frac{\left(n_{1}+2\right)}{2} \theta} \tag{85}
\end{equation*}
$$

On inserting $f(z)=F(\theta), \theta=\log z$ into (85), we have

$$
\begin{equation*}
f(z)=p_{1} z^{k+\frac{\left(n_{1}+2\right)}{2}}+\epsilon p_{2} z^{-k+\frac{\left(n_{1}+2\right)}{2}} . \tag{86}
\end{equation*}
$$

Putting $\alpha=0$, (86) and (70 in (59) we get a solution of (1):

$$
\begin{equation*}
u=\left[\beta_{0} e^{\sigma(x+t)}\right]^{2 /(1-p)}\left(p_{1} z_{0}^{k+1+\frac{n_{1}}{2}} \exp \left[(\phi x+\mu t)\left(k+1+\frac{n_{1}}{2}\right)\right]+\epsilon p_{2} z_{0}^{-k+1+\frac{n_{1}}{2}} \exp \left[(\phi x+\mu t)\left(-k+1+\frac{n_{1}}{2}\right)\right]\right)^{\frac{2}{1-p}} \tag{87}
\end{equation*}
$$

for

$$
\begin{equation*}
V(x, t)=\frac{2}{1-p} \beta_{0}^{2} z_{0}^{n_{1}+2} \phi^{2} l_{1} e^{2(\sigma x+\theta t)} e^{\left(2+n_{1}\right)(\phi x+\mu t)} . \tag{88}
\end{equation*}
$$

5. Results and Conclusions

The following solution

$$
\begin{equation*}
u(x)=\left[\frac{c^{2}}{2 v_{0}}\right]^{1 /(p-1)}\left(A / 2 x+b_{0}\right)^{2}, \tag{89}
\end{equation*}
$$

of (2), when the variable coefficient

$$
\begin{equation*}
V(x)=v_{0}\left(\frac{A x}{2}+b\right)^{-2 p} \tag{90}
\end{equation*}
$$

is recovered from the classes of solutions of the nonlinear parabolic equation with the variable coefficient

$$
\begin{equation*}
u_{t}=\Delta u+v_{0}\left(\frac{A x}{2}+b\right)^{-2 p} u^{p}, \quad(x, t) \in \mathcal{R}^{n} \times(0, \infty) . \tag{91}
\end{equation*}
$$

By applying the Lie group of infinitesimal transformations to (91). In yet another study, we employed the direct method of Clarkson and Kruskal [6] to (91) to replace it by a nonlinear ordinary differential equation

$$
\begin{equation*}
z^{2} f f^{\prime \prime}+l_{5} f^{2}+\frac{1+p}{1-p} z^{2} f^{\prime 2}+l_{1} z^{n_{1}+2}=0 . \tag{92}
\end{equation*}
$$

Perturbative solutions of (92) are derived and then the corresponding intermediate asymptotics of (91) is presented as

$$
\begin{equation*}
u(x, t)=\left[\beta_{0} e^{\sigma(x+t)}\right]^{2 /(1-p)}\left(p_{1} z_{0}^{k+1+\frac{n_{1}}{2}} \exp \left[(\phi x+\mu t)\left(k+1+\frac{n_{1}}{2}\right)\right]+\epsilon p_{2} z_{0}^{-k+1+\frac{n_{1}}{2}} \exp \left[(\phi x+\mu t)\left(-k+1+\frac{n_{1}}{2}\right)\right]\right)^{\frac{2}{1-p}} \tag{93}
\end{equation*}
$$

for

$$
\begin{equation*}
V(x, t)=\frac{2}{1-p} \beta_{0}^{2} z_{0}^{n_{1}+2} \phi^{2} l_{1} e^{2(\sigma x+\theta t)} e^{\left(2+n_{1}\right)(\phi x+\mu t)} . \tag{94}
\end{equation*}
$$

According to Barenblatt [2] similarity solutions of (91) play the role of intermediate asymptotics of the general solutions of classes of initial value problems.

References

[^1][4] G.W.Bluman and J.D.Cole, The general similarity solution of the heat equation, J. Math. Mech., 18(1969), 1035-1047.
[5] G.W.Bluman and S.Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, (1989).
[6] P.A.Clarkson and M.D.Kruskal, New similarity reductions of the Boussinesq equations, J. Math. Phys., 36(1989), 22012213.
[7] George M.Murphy, Ordinary Differential Equations and their Solutions, D. Van Nostrand Company, Inc, New Jersey, (1960).
[8] M.C.Nucci and P.A.Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzugh-Nagumo equation, Phys. Lett., 164(1992), 49-56.

[^0]: * E-mail: drgsivagami@gmail.com

[^1]: [1] W.F.Ames, Nonlinear Partial Differential Equations in Engineering, Vol. 2, Academic Press, New York, (1972).
 [2] G.I.Barenblatt, Similarity, Self-similarity and Intermediate Asymptotics, Consultant Bureau, New York, (1979).
 [3] C.M.Bender and S.A.Orszag, Advanced mathematical methods for Scientists and Engineers, McGraw-Hill, New York, (1978).

