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1. Introduction

The purpose of this work is to ascertain the superiosity of the non-classical method [1, 2] over the Lie’s classical method
[3] and CK-method [5-7]. Nucci and Clarkson [8] have already showed with the help of Fizugh-Nagumo equation that the

nonclassical method is more general than the CK-method.

It may be recalled that the group theoretic explanation of CK-methodd is provided To achive our goal we consider the

nonlinear parabolic equation with a variable coefficient

Ut = Uge + V(L z)u?, p>1. (1)

We show that the solution of (1) by Lie’s classical method only solves its the elliptic counterpart

Uze + V(2)u? = 0. (2)

Although the application of CK-method to (1) results in one solution it is the nonclassical method that yields two solutions.

This paper is divided into five sections. In section 2, 3 and 4 we apply the classical method, the nonclassical method and

the CK-method respectively to (1). Section 5 is devoted to the summary of the present work.
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2. Classical Lie Group Method

We now seek Lie group of infinitesimal transformations
u =u+eU(t,z,u)+O(%), t"=t+el(tz,u)+O0(?), =" =x+eX(tx u)+ O(), (3)
under which (1) is invariant. Then

—qup_lU — 'UszzX - up‘/tT - [Uzz + (2Uzu - Xzz)uz — LgppUt
+(Uuu - 2X:cu)ui — 2T pu Uty — quui - uuuiut + (Uu - QXx)(Ut - Vup)
—2Tpuzt — 3Xuug(uy — VuP) — Tyue(ue — VuP) — 2T uguqe] + Us + (U — T)ue

—Xiug — Tuuf — Xuuzur = 0, (4)

where we have replaced for u,, using (1). Equating the coefficients of wut, UsUst,uzu: and u2 in (4) to zero, we get

Ty =Ty = Xy = Uyy = 0 resulting in T =T(¢), X = X(z,t) and U = f(z,t)u + g(z,t). Now (4) reduces to
—qupil[uf—i—g] — PV X —uPViT — [ufre + Goe) — Ua[2fe — Xaw + Xo] Fu [T +2Xo ]+ VUl [f —2X. ]+ [ufi +g:] = 0. (5)

Again equating the coefficients of u,, u; and u° in (5) to zero we have

2fe — Xaw + Xy = 0, (6)
T -2X, = 0, (7)
—pVu  (uf + g) — uPVe X — uPVAT — ufer — Gow + Vfu" — 20V X, +ufe + g = O. (8)

Differentiating (7) with respect to x gives X = 0 so that (6) reduces to
2fs + X¢ = 0. 9)

Integrating (7) with respect to z, we get
T'(t)

X(z,t) = z +0(t), (10)

where b(t) is function of integration. Inserting (10) in (9) and integrating with respect to z, we find that
11 2 1 /
f=—=T"(t)z" — ib )z + c(t), (11)
where ¢(t) is another function of integration. Now (8) assumes the form

VuP <—%T”(t):c2 - %b'(t)x + c(t)> (1—p) —pVuP g — VuPT'(t) — W’ ViT

T'(1)
2

uT" (t)

P
uP V[ 7

o+ b(t)] + oot u (—%T”’(t)af - %b”(t)m n c’(t)) Yg = 0. (12)

Equating the coefficients of P!, u and u? in (12) to zero, we have

g =0, (13)
T// T/// /1
T— 3 x —?ZU‘FC/ = 0, (14)
T// 5 b/ , B
v -5 —Em—i—c 1-p)—VT" =V, X-V,T =0 (15)
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The coefficients of 2, x and 2° in (14) and (15) when equated to zero give

Tl// — b// — T// +4C/ — T// — b/ — 0,

(1 =p)e—A]V — (§x+b)vx —(At+B)V, = 0.

Equations in (16)-(17) are satisfied if b and ¢ are constants,

3] A
2](517 + b)7

cd—p) 3
A

T=At+ B and V:%(At—I—B)[

where A, B and v are constants. Substituting (18) into (10) and (11) (recall that U = fu), we have

X:§x+b, T=At+ B, U=cu.

The invariant surface condition dyﬂ” = % = %“ becomes

de  dt du
%x+b_At+B_cu'

Integration of equations (20) gives the similarity form of solutions of (2.1) as

B (g:p +b)?

u= (At + B)’*F(2), z= AAT B

Putting (21) in (3) we get the following ordinary differential equation for the similarity function F'(z):

AzF" + A (% +z> F 49222 FP — cF = 0.

Substituting F' = ¢12°?, we have

—1 A —1 1
Acica(ca —1)2%7 " + 501622c2 + Acrcaz®® + 282722 — e 22 = 0.

Case 1: cz—lzch—&—%

If we balance the first, second and third terms and the remaining terms equal to zero, we find that

1

o = B <AC2(17C2)7§@)]E,

Aco = c.

Thus

1
p—1
F = [% (ACQ(l — 02) — éCQ):| ! z2(13—p) .

Corresponding solution of (1) is a solution of (1):

. [1 A =1 _s
u = (At+B)A |:§ <AC‘2(1 —CQ) — 562>:| ,2;2(1*17)7

where V(x, t) is given by
c(l—p) A

(At + )" %}(?«M).

Vo, t) = %

(16)

(17)

(20)

(21)

(22)

(24)

(25)

(26)

(27)

(28)

<
I
b
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Case 2: c2 = pca + %

Writing F' = ¢12°? in (22) and taking the coefficients of z°? and the remaining terms equal to zero separately, we have

1 4
= — = = . 2
=5 P00 a=g577g (29)
Substituting (29) in F = ¢12°? we finally arrive at
4 1
— 2
F 5e A% (30)
Insertion of (30) into (21) and (18) lead to a solution of (1):
w = (At4+B)§—L1 2 (31)
2c— A ’
cl—p) _:
V) = LA BT (e 1), (32)
3. Nonclassical Method
It follows from the invariant surface condition (where we have taken, without loss of generality, T = 1)
wur = U — Xug. (33)
In view of (33), equation (4) reduces to
—pVuP~U — updd—‘t/T - UP%X — [Use + (2Usu — Xoo)tte + (Uuu — 2X o )2
—Xuutts + (Uu — 2Xo) (U = Xug) — VU] = 3Xuue (U — Xua) — Vu']]
+U: + Uu(U — Xug) — Xeuz — Xyugur = 0, (34)
Successively equating the coefficients of u®, u,,u2 and u,u: in (34) to zero we find that
—puP TV () U — uP V' (2) X — U +2UX, + 0PV (2)Uy — 2uPV (2) X, + Uy = 0, (35)
—Xi — 2Upu + Xoz — 2X X2 +3UX, — 3X,,V(z)u? = 0. (36)
U + 2Xzu — 3X X, = 0, (37)
X, = 0. (38)
Again equating the coefficients of u?~! and u” in (35) to zero we have
U = 0. (39)
Vi 4+ XV'(z) +2V(2) X, = 0. (40)
Equation (40) leads to
Vi(z)=voX 2 (41)
Case 1: X; =0
Substituting (39) in (36), we get
Xaw — 2X, = 0. (42)
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Now solving (42), we obtain the solution

X =2
x
On inserting (43), equation (41) leads to
V(z) = voz’.
. . _ . . s dx d
Substituting (39), (43) and T = 1, the invariant surface condition for z, namely ¢ =

du
—zdr =dt = —.
zdx

Integration of equations (45) gives a similarity solution of (1) in the form

u = F(z),
2
x
=t —_—
z + 5
Substitution of (47) in (1) yields:
" + ’U()Fp =0.

Equation (48) can be modified into

2 Vo +1
+ —F"" =0.
1+p

1 —p vo 1/2 2/(1-p)
F(z): T (7171)) z+ Cy s

where C5 is an arbitrary constant. Thus the similarity solution of (1) in this case is

2/(1-p)
1—p Vo 1/2 z?
(2 |:<1p> (t+?)+02 )

2

z(z,t) = t+ %

F

Now solving (49), we obtain

g
N
8
=
I

Case 2: X: #0
Substituting (39) in (36), we get

Xt — Xoo +2X, =0.

Now solving (52), we obtain the solution

- _T
o2t
On inserting (53), equation (40) leads to
V(z) =ta™ "
. . _ . . . .. dz _ d
Substituting (39), (53) and T = 1, the invariant surface condition for z, namely ¢ = ¥

2tde  dt  du

x 1 0°
Integration of equations (55) gives a similarity solution of (1) in the form

u = F(2),

-2
z =tz 7,

Substitution of (57) in (1) yields:

42°F" + (62 — 1)F' + 2F? = 0.

= %Z becomes

= djz becomes

(43)

(44)

(45)

(48)

(49)

(55)

(56)

(57)

(58)

[\
(=}
(524
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4. Direct Similarity Method

We transform (1) through

u=[v(z, 1)), (59)

to the following Clarkson and Kruskal [6]. We seek solutions of (59) in the form
v(z,t) = a(z,t) + Bz, t) f(z), z==z(z,t). (60)

We substitute (59) in (1) and require the resulting equation in the following form of an ordinary differential equation

governing the function f(z):

A1(2) + Aa(2) ' + As(2)f + Aa(2) fF + As(2) 2 + Ao(2) f + Ar(2) " + F£" =0. (61)
The functions An(z), n = 1,2, - , 7 are introduced according to
—aa + %ai + acwe + @V = B222Mi(2), (62)
—afBz + %ﬁam + afzas + 20802 = B2aN2(2), (63)
—ap— for+ a6, 4, + B = FEa(a) (64
—Bz + 2(%?61% + Brax + 2Boza = BziAa(2), (65)
BB+ LB + B = BAs(2) (66)
TEEEE = f7EA(e), (67)
a = BAs(2). (68)

Remark 4.1. If a(x,t) is to be obtained from an equation of the form a(x,t) = a(x,t) + B(z,t)A(z) , then we may set
A(z) = 0.

Remark 4.2. If 5(z,t) is given by an equation of the form [(x,t) = B(m, t)A(z), then we may choose A(z) = 1.

Remark 4.3. If the equation A(z) = Z(x,t) is to be solved for z, then we may write A(z) = z.

In view of Remark 4.1, we satisfy (68) by taking @« = A7 = 0. And equation (67) simply gives Ag = %, With a = 0,

equations (63), (64) and (62) become Az = A3 =0 and

1%"\/(95) — B222A,(2). (69)

We assume that

,8 _ /Boea'z—ktht’ 5= Z06¢z+pt. (70)

Evidently z lies in the interval [[,0) when = € [0,00) and ¢t € [0,00). Equations (65), (66) and (69), requires that As is

proportional to z72 , A4 is proportional to 2~ and A; is proportional to z"* respectively we indeed find that

_ 0 2 o2
As = sz 27 Is = —? mg7 (71)
_ m 4 o
A4 = l4Z 1, 14:7&4’@%4*1, (72)
A= L™, V(nt) = 2 B2 222, (R(ow 0D (2 4n1) (Bt (73)

1-p
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Substituting for An(2), n =1,2,...,7, equation (61) is

1+p2

- L N O e ) (74)

Z2ff// + 7
On inserting f(z) = F(6), 6 = logz, equation (74) transforms into

p+1

FF" — F + (la = 1)FF +15F* + ™29 =, (75)

The condition f(0) is finite corresponds to F(—oo) is finite. We transform (75) through F(0) = (0) , l1 = € to the

autonomous equation

_ _ 2
2mt2) g lee ey |2t ~PTG =0, (76)

p—1 T_l)

It is clear that G(0) — oo as § — —oo since n; > 0. Writing G = Go(z) + €G1(z) in (76) and equating the coefficients of

€,i=0,1to 0, we have

_ _ 2
—2m +2) 71+z4} GoGly + GoGl + [Mﬂzr pyrt2 +15} GSJ"“GO — o, (77)
p—1 2p—1) p—
{% ~1+ 14} (GoG' + G1G) + GoGY + G1 Gy
—(n1+2) Tl1+2 p+1_,
2| — -1 2—— 1 =0.
+ [ 2p—1) + (la ) + 5| GoG1 + iy 1GOG1 + 0 (78)
It is easily verified that a solution of (77) is
Go(z) = pre®’, (79)
where k is a negetive root of
p+1] 2 [—2(n1+2) —(n1 +2)? ny + 2
{1+p71}k +{ — +la| k+ 2 —1) +(la—-1) 5 +15| =0, (80)
and p; > 0. Solving (80) we find that
/2
_(=-p) | (20m+2) . e 85 !
k= 1 b1 +1-la) £ ((1=1L) T—p . (81)
Then a solution of (78) is
G1(2) = pee™™, (82)
where
1
p2=— — (83)
7 Lpopt + 2 [(2‘552) + O (1~ 1) + l“”] bo
The corresponding solution of (76) is
G(0) = p1e™ + epoe™, (84)
where p; is an arbitrary constant. Then
k+(n1+2)9 —k+(n1+2)0
F(0) = pie 2 + epae z (85)

[\
(=}
~
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On inserting f(z) = F(0), 0 = log z into (85), we have

(n1+2) (n1+2)
flz)= p12"T R epaz T Ean (86)
Putting o = 0, (86) and (70 in (59) we get a solution of (1):
2/(1-p) ny _ ny =
u= [,Boe"(”“} (plzg+1+ ® exp [(dm + pt)(k+1+ %)} tepazy 7 exp [(m +pt)(—=k+1+ %)]) @)
for
V(a,t) = % a1 @21 HOT 00 () (Grtut), (88)
-D
5. Results and Conclusions
The following solution
2 1/(p—1)
o) = o] Ay, (59)
2’U0
of (2), when the variable coefficient
A _
V(@) =vo(5 +6)7, (90)
is recovered from the classes of solutions of the nonlinear parabolic equation with the variable coefficient
Az —2p, P n
ur = Au+vo(— + b)) PuP, (z,t) € R" x (0,00). (91)

2

By applying the Lie group of infinitesimal transformations to (91). In yet another study, we employed the direct method of

Clarkson and Kruskal [6] to (91) to replace it by a nonlinear ordinary differential equation

2E s + 11—5;)0,2 LMt . (92)

Perturbative solutions of (92) are derived and then the corresponding intermediate asymptotics of (91) is presented as

) = [0 ] (a0 exp [(0 4 )+ 1+ ]+ epag™ T xp (00 4 )k 14 5] 7,
(93)

for
V(z,t) = $ﬂ3231+2¢2l162(”+9t>e(2+”1)<¢z+“t). (94)

According to Barenblatt [2] similarity solutions of (91) play the role of intermediate asymptotics of the general solutions of

classes of initial value problems.
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