Oscillation of Fractional Nonlinear Partial Differential Equations with Continuous Distributed Deviating Arguments


Keywords:
Fractional partial differential equation, continuous deviating arguments, oscillationAbstract
In this article, we establish some oscillation criteria for the fractional order partial differential equation with continuous distributed deviating arguments of the form \begin{align*} \dfrac{\partial}{\partial t}\left[r(t)D_{+,t}^{\alpha}\left(u(x,t)-\int_{\gamma}^{\delta}{q_0}(t,\zeta)u(x,\rho(t,\zeta))d\eta(\zeta)\right)\right]&=a(t)\Delta u(x,t)+\int_{c}^{d}p(t,\xi)\Delta u[x,\tau(t,\xi)]d\omega(\xi)\\ -\int_{c}^{d}q(x,t,\xi)g\left(u[x,\sigma(t,\xi)]\right)d\omega(\xi)+f(x,t),~~(x,t)\in G&=\Omega\times \mathbb{R}_+, \end{align*} with subject to the boundary conditions \begin{align*} \dfrac{\partial u(x,t)}{\partial \nu}+\mu(x,t) u(x,t)=\psi(x,t), \hspace{0.15in} (x,t)\in\partial\Omega \times \mathbb{R}_{+} \end{align*} and $u=\chi(x,t)$, $(x,t)\in\partial\Omega\times \mathbb{R}_{+}$. Using the generalized Riccati technique and integral averaging method, new oscillation criteria are obtained.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.