g*\(s^*\) - Closed Sets in Topological Spaces

N. Gayathri

1 Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, Tamilnadu, India.

Abstract: In this paper, a new class of sets, namely \(g^*s^*\)-closed sets was introduced and some of their properties were studied. Further the notion of \(g^*s^*\)-continuous maps, \(g^*s^*\)- irresolute maps, \(T_b^*\)-spaces, \(g_Tb^*\)-spaces, \(\ast gTb^*\)-spaces, \(g^*s^*\)-compactness, \(g^*s^*\)-connectedness were introduced and its properties are investigated.

Keywords: \(g^*s^*\)-closed set, \(g^*s^*\)-continuous maps, \(g^*s^*\)- irresolute maps, \(T_b^*\)-spaces, \(g_Tb^*\)-spaces, \(\ast gTb^*\)-spaces, \(g^*s^*\)-compactness, \(g^*s^*\)-connectedness.

1. Introduction

The concept of generalized closed sets and semi-open sets were introduced and studied by Norman Levine [7] respectively. Arya and Nour [4] defined generalized semi-closed sets for obtaining some characterizations of s-normal spaces. Bhattacharya and Lahiri [5] introduced and investigated semi-generalized closed sets. The concept of generalized semi-pre closed sets was introduced by Dontchev [6]. Palaniappan and Rao [14] introduced \(rg\)-closed sets. Pauline Mary Helen, Ponnuthai and Veronica [15] introduced and studied \(g^*\)-closed sets. Anitha [3] introduced \(g^*s\)-closed sets. \(ga\)-closed sets and \(ag\)-closed sets were introduced by Maki et. al. [10] and some of their properties were investigated. In this paper we introduce a new class of called \(g^*s^*\)-closed sets and study the relationship of \(g^*s^*\)-closed sets with the above mentioned sets. We also obtain basic properties of \(g^*s^*\)-closed sets and introduced \(g^*s^*\)-continuous maps and \(g^*s^*\)- irresolute maps.

2. Preliminaries

Throughout this paper \((X, \tau)\) and \((Y, \sigma)\) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset of a space \((X, \tau)\), \(cl(A)\), \(int(A)\) and \(scl(A)\) denote the closure of A, the interior of A and semi – closure of A respectively. The class of all subsets of a space \((X, \tau)\) is denoted by \(C(X, \tau)\).

Definition 2.1. A subset \(A\) of a topological space \((X, \tau)\) is called

(i). a semi – openset [8] if \(A \subseteq cl(int(A))\) and semi-closed set if \(int(cl(A)) \subseteq A\).

(ii). a semi – preopenset [2] \((=\beta – open\ [1])\) if \(A \subseteq cl(int(cl(A)))\) and a semi – preclosed [2] set \((=\beta – closed\ [1])\) if \(int(cl(int(A))) \subseteq A\).

* E-mail: gayupadmagayu@gmail.com
Definition 2.2. A subset A of a topological space (X, τ) is called

(i). g-closed set [7] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

(ii). gs-closed set [4] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

(iii). w-closed set [18] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).

(iv). g^*-closed set [19] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ).

(v). g^{**}-closed set [15] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X, τ).

(vi). gsp-closed set [6] if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

(vii). g^s-closed set [3] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X, τ).

(viii). rg-closed set [14] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in (X, τ).

Definition 2.3. A function $f : (X, \tau) \to (Y, \sigma)$ is called

(i). g^*-continuous [19] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is g^*-closed in (X, τ).

(ii). gs-continuous [4] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is gs-closed in (X, τ).

(iii). gsp-continuous [6] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is gsp-closed in (X, τ).

(iv). g^s-continuous [3] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is g^s-closed in (X, τ).

(v). g^{**}-continuous [19] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is g^{**}-closed in (X, τ).

Definition 2.4. A topological space (X, τ) is said to be

(i). a T^*_2-space [19] if every g^*-closed set in (X, τ) is closed in (X, τ).

(ii). a T^{**}_2-space [15] if every g^{**}-closed set in (X, τ) is closed in (X, τ).

3. Properties of g^s-closed sets

We now introduce the following definition.

Definition 3.1. A subset I of (X, τ) is said to be a g^s-closed set if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ). The class of all g^s-closed subset of (X, τ) is denoted by $G^s \subseteq C(X, \tau)$.

Proposition 3.2. Every closed set is g^s-closed.

The converse of the above proposition need not be true and in general it can be seen from the following example.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. Let $A = \{a, b\}$, then A is g^s-closed but not closed. So, the class of g^s-closed sets is properly contained in the class of closed sets.

Proposition 3.4. Every g^*-closed set is g^s-closed set.

The converse of the above proposition need not be true and in general it can be seen from the following example.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}\}$. Let $A = \{b, c\}$, then A is g^s-closed but not g^*-closed.
Proposition 3.6. Every g^{**}-closed set is g^*s^*-closed set.

The converse of the above proposition need not be true and in general it can be seen from the following example.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{b\}$, then A is g^*s^*-closed but not g^{**}-closed.

Proposition 3.8. Every g^*s^*-closed set is g^*s^*-closed set.

The converse of the above proposition need not be true and in general it can be seen from the following example.

Example 3.9. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a, b\}$, then A is g^*s^*-closed but not g^*s^*-closed set.

Proposition 3.10. Every g^*s^*-closed set is gs-closed set.

The converse of the above proposition need not be true and in general it can be seen from the following example.

Example 3.11. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Let $A = \{b, c\}$, then A is gs-closed but not g^*s^*-closed.

Proposition 3.12. Every g^*s^*-closed set is gs-p-closed set.

The converse of the above proposition need not be true and in general it can be seen from the following example.

Example 3.13. In Example 3.11, $A = \{c\}$. Then A is gs-closed but not g^*s^*-closed.

Remark 3.14. g^*s^*-closedness is independent of g-closedness.

Example 3.15. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}\}$. Let $A = \{c\}$, then A is g^*s^*-closed but not g-closed set. In example [3.11], $A = \{b\}$. Then A is g-closed but not g^*s^*-closed.

Remark 3.16. g^*s^*-closedness is independent of w-closedness (or) s*g-closedness.

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}\}$. Let $A = \{b, c\}$. In Example 3.11, A is g^*s^*-closed but not w-closed set (or) s*g-closed.

Remark 3.18. g^*s^*-closedness is independent of rg-closedness.

In Example 3.7, $A = \{a, b\}$. Then A is rg-closed but not g^*s^*-closed. In Example 3.7, $A = \{b\}$. Then A is g^*s^*-closed but not rg-closed. Thus we have the following diagram.

![Diagram](image-url)

where $A \rightarrow B$ implies B and $A \not\rightarrow B$ represents A does not imply B (resp. A and B are independent).
4. \(g^*s^* \)-Continuous Maps and \(g^*s^* \)-Irresolute Maps.

Definition 4.1. A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) from a topological space \((X, \tau) \) to a topological space \((Y, \sigma) \) is called \(g^*s^* \)-continuous if the inverse image of every closed set in \((Y, \sigma) \) is \(g^*s^* \)-closed in \((X, \tau) \).

Theorem 4.2. Every continuous map is \(g^*s^* \)-continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be continuous. Let \(F \) be a closed set in \((Y, \sigma) \) then \(f^{-1}(F) \) is closed in \((X, \tau) \). Since every closed set is \(g^*s^* \)-closed, \(f^{-1}(F) \) is \(g^*s^* \)-closed in \((X, \tau) \). \(f \) is \(g^*s^* \)-continuous in \((X, \tau) \).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.3. Let \(X = Y = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}\} \), \(\sigma = \{\phi, Y, \{b\}, \{a, c\}, \{a, b\}, \{a, b, c\}\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity map. The inverse image of every closed set in \((Y, \sigma) \) is \(g^*s^* \)-closed, but \(f^{-1}([c]) = \{c\} \) is not closed in \((X, \tau) \).

Theorem 4.4. Every \(g^*s^* \)-continuous map is \(g^*s^* \)-continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be \(g^*s^* \)-continuous. Let \(F \) be a closed set in \((Y, \sigma) \) then \(f^{-1}(F) \) is \(g^*s^* \)-closed in \((X, \tau) \). Since every \(g^*s^* \)-closed set is \(g^*s^* \)-closed, \(f^{-1}(F) \) is \(g^*s^* \)-closed in \((X, \tau) \). \(f \) is \(g^*s^* \)-continuous in \((X, \tau) \).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.5. Let \(X = Y = \{a, b, c\} \) and \(\tau = \{\phi, X, \{b\}, \{b, c\}\} \), \(\sigma = \{\phi, X, \{c\}, \{a, b\}, \{a, c\}\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity map. The inverse image of every closed set in \((Y, \sigma) \) is \(g^*s^* \)-closed, but \(f^{-1}([b, c]) = \{b, c\} \) is not \(g^*s^* \)-closed in \((X, \tau) \).

Theorem 4.6. Every \(g^* \)-continuous map is \(g^*s^* \)-continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be \(g^* \)-continuous. Let \(F \) be a closed set in \((Y, \sigma) \) then \(f^{-1}(F) \) is \(g^* \)-closed in \((X, \tau) \). Since every \(g^*s^* \)-closed set is \(g^*s^* \)-closed, \(f^{-1}(F) \) is \(g^*s^* \)-closed in \((X, \tau) \). \(f \) is \(g^*s^* \)-continuous in \((X, \tau) \).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.7. Let \(X = Y = \{a, b, c\} \) and \(\tau = \{\phi, X, \{b\}\}, \sigma = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity map. The inverse image of every closed set in \((Y, \sigma) \) is \(g^*s^* \)-closed, but \(f^{-1}([b, c]) = \{b, c\} \) which is not \(g^*s^* \)-closed in \((X, \tau) \).

Theorem 4.8. Every \(g^** \)-continuous map is \(g^*s^* \)-continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be \(g^** \)-continuous. Let \(F \) be a closed set in \((Y, \sigma) \) then \(f^{-1}(F) \) is \(g^** \)-closed in \((X, \tau) \). Since every \(g^**s^* \)-closed set is \(g^*s^* \)-closed, \(f^{-1}(F) \) is \(g^*s^* \)-closed in \((X, \tau) \). \(f \) is \(g^*s^* \)-continuous in \((X, \tau) \).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.9. Let \(X = Y = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}, \{b, a, b\}\}, \sigma = \{\phi, X, \{a\}, \{c\}, \{a, c\}\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a mapping defined by \(f(a) = a, f(b) = c, f(c) = b \). The inverse image of every closed set in \((Y, \sigma) \) is \(g^*s^* \)-closed, but \(f^{-1}([a, b]) = \{a, c\} \) which is not \(g^** \)-closed in \((X, \tau) \).

Theorem 4.10. Every \(g^*s^* \)-continuous map is \(gs \)-continuous.
Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be $g^{*}s^{*}$-continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is $g^{*}s^{*}$-closed in (X, τ). Since every $g^{*}s^{*}$-closed set is gs-closed, $f^{-1}(F)$ is gs-closed in (X, τ). f is gs-continuous in (X, τ). □

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.13. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}, \sigma = \{\phi, X, \{c\}, \{a, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by $f(a) = a, f(b) = c, f(c) = b$. The inverse image of every closed set in (Y, σ) is gs-closed, but $f^{-1}([b]) = \{c\}$ which is not $g^{*}s^{*}$-closed in (X, τ).

Theorem 4.12. Every $g^{*}s^{*}$-continuous map is gsp-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be $g^{*}s^{*}$-continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is $g^{*}s^{*}$-closed in (X, τ). Since every $g^{*}s^{*}$-closed set is gsp-closed, $f^{-1}(F)$ is gsp-closed in (X, τ). f is gsp-continuous in (X, τ). □

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 4.13. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}, \sigma = \{\phi, X, \{c\}, \{a, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by $f(a) = a, f(b) = c, f(c) = b$. The inverse image of every closed set in (Y, σ) is gs-closed, but $f^{-1}([b]) = \{c\}$ which is not $g^{*}s^{*}$-closed in (X, τ). Thus, we have the following diagram.

![Diagram](image)

Definition 4.14. A map $f : (X, \tau) \to (Y, \sigma)$ from a topological space (X, τ) to a topological space (Y, σ) is called $g^{*}s^{*}$-irresolute if the inverse image of every $g^{*}s^{*}$-closed set in (Y, σ) is $g^{*}s^{*}$-closed in (X, τ).

Theorem 4.15. Every $g^{*}s^{*}$-irresolute map is $g^{*}s^{*}$-continuous.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 4.16. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, X, \{b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by $f(a) = b, f(b) = c, f(c) = a$. Let $\{a, c\}$ be a closed set in (Y, σ). But $f^{-1}([a, c]) = \{a, b\}$ which is not $g^{*}s^{*}$-closed set in (X, τ). f is $g^{*}s^{*}$-continuous. $\{c\}$ is a $g^{*}s^{*}$-closed set in (Y, σ). But $f^{-1}([c]) = \{a\}$ which is not $g^{*}s^{*}$-closed in (X, τ). f is not $g^{*}s^{*}$-irresolute.

Theorem 4.17. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$, then

(i). $g \circ f : (X, \tau) \to (Z, \eta)$ is $g^{*}s^{*}$-continuous if f is $g^{*}s^{*}$-irresolute and g is $g^{*}s^{*}$-continuous.

(ii). $g \circ f : (X, \tau) \to (Z, \eta)$ is $g^{*}s^{*}$-irresolute if f and g are $g^{*}s^{*}$-irresolute.

(iii). $g \circ f : (X, \tau) \to (Z, \eta)$ is $g^{*}s^{*}$-continuous if f is $g^{*}s^{*}$-continuous and g is $g^{*}s^{*}$-irresolute.
5. Applications Of g^*s^*-Closed Set.

As application of g^*s^*-closed sets, new spaces namely, Tb*-space, gTb*-space and *gTb*-space are introduced. We introduce the following definitions.

Definition 5.1. A space (X,τ) is said to be a Tb* space if every g^*s^*-closed set in (X,τ) is closed in (X,τ).

Theorem 5.2. Every Tb* space is $T_{1/2}s^*$-space.

Proof. Let (X,τ) be a Tb* space. Let A be a g^*-closed set in (X,τ). But by proposition (3.4), every g^*-closed set is g^*s^*-closed. Since (X,τ) is a Tb* space, A is closed in (X,τ). (X,τ) is a $T_{1/2}s^*$-space.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 5.3. In example [3.5], Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$. Here, (X,τ) is a $T_{1/2}s^*$-space and the set $\{b, c\}$ is g^*s^*-closed but not closed. (X,τ) is not a Tb* space.

Theorem 5.4. Let $f : (X,\tau) \to (Y,\sigma)$ be a g^*s^*-continuous mapping. If (X,τ) is Tb* space, then f is continuous.

Proof. Let $f : (X,\tau) \to (Y,\sigma)$ be g^*s^*-continuous. Let F be a closed set in (Y,σ). Then $f^{-1}(F)$ is g^*s^*-closed in (X,τ). Since (X,τ) is Tb* space, $f^{-1}(F)$ is closed in (X,τ). f is continuous.

Theorem 5.5. Every Tb* space is $T_{1/2} * s^*$-space.

Proof. Let (X,τ) be a Tb* space. Let A be g^{**}-closed set in (X,τ). But by proposition (3.6), every g^{**}-closed set is g^*s^*-closed. Since (X,τ) is Tb* space, A is closed in (X,τ), which implies, g^*s^*-closed set is closed. (X,τ) is a $T_{1/2} * s^*$-space.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 5.6. In example [3.7], Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Here, (X,τ) is a $T_{1/2} * s^*$-space and the sets $\{a\}, \{b\}$ are g^*s^*-closed but not closed. (X,τ) is not Tb* space.

Definition 5.7. A space (X,τ) is said to be gTb* space if every g^*s^*-closed set in (X,τ) is g^*-closed in (X,τ).

Theorem 5.8. Every gTb* space is Tb* space.

Proof. Let (X,τ) be a Tb* space. Let A be g^*s^*-closed set in (X,τ). Since (X,τ) is a Tb* space, A is closed in (X,τ). But we know that, every closed set is g^*-closed. Hence, A is g^*-closed set in (X,τ). (X,τ) is a gTb* space.

Theorem 5.9. Let $f : (X,\tau) \to (Y,\sigma)$ be g^*s^*-continuous mapping. If (X,τ) is gTb* space, then f is g^*-continuous.

Proof. Let $f : (X,\tau) \to (Y,\sigma)$ be g^*s^*-continuous. Let F be a closed set in (Y,σ). Then $f^{-1}(F)$ is g^*s^*-closed in (X,τ). Since (X,τ) is gTb* space, $f^{-1}(F)$ is g^*-closed in (X,τ). f is g^*-continuous.

Definition 5.10. A space (X,τ) is said to be *gTb* space if every g^*s^*-closed set in (X,τ) is g^*s-closed in (X,τ).

Theorem 5.11. Every gTb* space is *gTb* space.

Proof. Let (X,τ) be a Tb* space. Let A be g^*s^*-closed set in (X,τ). Since (X,τ) is Tb* space, A is closed in (X,τ). But we know that, every closed set is g^*s-closed. Hence, A is g^*s-closed set in (X,τ). (X,τ) is a *gTb* space.

Theorem 5.12. Let $f : (X,\tau) \to (Y,\sigma)$ be g^*s^*-continuous mapping. If (X,τ) is *gTb* space, then f is g^*s-continuous.

Proof. Let $f : (X,\tau) \to (Y,\sigma)$ be g^*s^*-continuous. Let F be a closed set in (Y,σ). Then $f^{-1}(F)$ is g^*s^*-closed in (X,τ). Since (X,τ) is a *gTb* space, $f^{-1}(F)$ is g^*s-closed in (X,τ). f is g^*s-continuous.
6. G*S*-Compactness

Definition 6.1. A collection \(\{A_i/i \in A\} \) of \(g^*s^* \)-open sets in a topological space \(X \) is called a \(g^*s^* \)-open cover of a subset \(B \) of \(X \) if \(B \subset \cup_{i \in A} A_i \).

Definition 6.2. A topological space \(X \) is \(G^*S^* \)-compact if every \(g^*s^* \)-open cover of \(X \) has a finite sub cover.

Definition 6.3. A subset \(B \) of a topological space \(X \) is said to be \(G^*S^* \)-compact relative to \(X \) if for every collection of \(g^*s^* \)-open subsets of \(X \) such that \(B \subset \cup_{i \in A} A_i \), there exists a finite subset \(A_0 \) of \(A \) such that, \(B \subset \cup_{i \in A_0} A_i \).

Definition 6.4. A subset \(B \) of \(X \) is \(G^*S^* \)-compact if \(B \) is \(G^*S^* \)-compact as a subspace of \(X \).

Proposition 6.5. A \(g^*s^* \)-closed subset of \(G^*S^* \)-compact space is \(G^*S^* \)-compact relative to \(X \).

Proof. Let \(A \) be a \(g^*s^* \)-closed subset of \(G^*S^* \)-compact space \(X \). Then \(A^c \) is \(g^*s^* \)-open in \(X \). Let \(M \) be a cover of \(A \) by \(g^*s^* \)-open sets in \(X \). Then, \(M, A^c \) is a \(g^*s^* \)-open cover of \(X \). Since \(X \) is \(G^*S^* \)-compact, it has a finite sub-cover, namely \(G_1, G_2, \ldots, G_n \). Therefore, we have obtained a finite \(g^*s^* \)-open sub-cover of \(A \). Thus, \(A \) is \(G^*S^* \)-compact relative to \(X \).

Proposition 6.6.

(i). A \(g^*s^* \)-continuous image of a \(G^*S^* \)-compact space is compact.

(ii). If a map \(f : X \to Y \) is \(g^*s^* \)-irresolute and a subset \(B \) of \(X \) is \(G^*S^* \)-compact relative to \(X \), then the image \(f(B) \) is \(G^*S^* \)-compact relative to \(X \).

Proof.

(i). Let \(f : X \to Y \) be a \(g^*s^* \)-continuous map from a \(G^*S^* \)-compact space onto a topological space \(Y \). Let \(A_i : i \in A \) be an open cover of \(Y \). Then \(\{f^{-1}(A_i) : i \in A\} \) is a \(g^*s^* \)-open cover of \(X \). Since \(X \) is \(G^*S^* \)-compact, it has a finite subcover, namely \(\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\} \). Since \(f \) is onto, \(A_1, A_2, \ldots, A_n \) is an open cover of \(Y \) and so \(Y \) is compact.

(ii). Let \(A_i : i \in A \) be any collection of \(g^*s^* \)-open subsets of \(Y \) such that \(f(B) \subset \cup A_i \). Then \(B \subset \cup f^{-1}(A_i) \). Therefore, we have \(f(B) \subset \cup A_i \). Thus, \(f(B) \) is \(G^*S^* \)-compact relative to \(Y \).

Theorem 6.7. If the product space of two non-empty spaces is \(G^*S^* \)-compact, then each of the factor spaces is \(G^*S^* \)-compact.

Proof. Let \(X \times Y \) be the product space of non-empty spaces \(X \) and \(Y \). Obviously, the projection \(p : X \times Y \to Y \) from \(X \times Y \) onto \(X \) is \(g^*s^* \)-irresolute map. In fact, let \(F \) be any \(g^*s^* \)-closed set of \(X \). Then it follows that, \(F \times \{p^{-1}(F)\} \) is \(g^*s^* \)-closed in \(X \times Y \) and hence \(p \) is \(g^*s^* \)-irresolute. Now, suppose that \(X \times Y \) is \(G^*S^* \)-compact. By using Proposition, we obtain that the \(g^*s^* \)-irresolute image \(p(X \times Y)(= X) \) is \(G^*S^* \)-compact. For \(Y \), the proof is similar to the case of \(X \).

7. G*S*-Connectedness

Definition 7.1. A topological space \(X \) is \(G^*S^* \)-connected if \(X \) cannot be written as a disjoint union of two non-empty \(g^*s^* \)-open sets. A subset \(V \) of \(X \) is \(G^*S^* \)-connected if \(V \) is \(G^*S^* \)-connected as a subspace.

Proposition 7.2. For a topological space \(X \), the following conditions are equivalent.
(i). X is G^*S^*-connected.

(ii). The only subsets of X which are both g^*s^*-open and g^*s^*-closed are empty set and X.

(iii). Each g^*s^*-continuous map of X into a discrete space Y with at least two points is a constant map.

Proof.

(i) \Rightarrow (ii): Let U be a g^*s^*-open and g^*s^*-closed subset of X. Then $X=U$ is both g^*s^*-closed and g^*s^*-open. Since X is the disjoint union of the g^*s^*-open sets U and $X-U$, one of these must be empty, that is $U = \emptyset \cup X = X$.

(ii) \Rightarrow (i): Suppose $X = A \cup B$ where A and B are disjoint non-empty g^*s^*-open subsets of X. Since A is a g^*s^*-open subset of X, by condition (ii), it may be g^*s^*-closed and $A = \emptyset$ or $A = X$. If $A = \emptyset$, $X=B$. If $A=X$, $B=\emptyset$. Thus, X is g^*s^*-connected.

(ii) \Rightarrow (iii): Let $f:X \to Y$ be a g^*s^*-continuous map. Then X is covered by g^*s^*-open and g^*s^*-closed covering $\{f^{-1}(y) / y \in Y\}$. By assumption, $f^{-1}(y) = \emptyset$ or X for each $x \in X$. If $f^{-1}(y) = \emptyset$ for all $y \in Y$ then f fails to be a map. Then, there exists only one point $y \in Y$ such that $f^{-1}(y) \neq \emptyset$ and hence $f^{-1}(y) = X$ which shows that f is a constant map.

(iii) \Rightarrow (ii): Let U be both g^*s^*-open and g^*s^*-closed in X. Suppose $U \neq \emptyset$. Let $f : X \to Y$ be a g^*s^*-continuous map defined by $f(U) = \{y\}$ and $f(X-U) = \{w\}$ for some distinct points y and w in Y. By assumption, f is a constant. Therefore, $U = X$.

It is obvious that every G^*S^*-connected space is connected. The following example shows that the converse is not true.

Example 7.3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$. Then the topological space is (X, τ) is connected. However, since $\{b\}$ is both g^*s^*-closed and g^*s^*-open in X. By Proposition 7.2, X is not G^*S^*-connected.

Proposition 7.4. If X is T^*_b-space and connected, then X is g^*s^*-connected.

Proof. Let X be T^*_b-space and connected. Assume that X can be written in the form $X = A \cup B$ where A and B are nonempty disjoint and g^*s^*-open sets in X. Since X is T^*_b-space, every g^*s^*-open set is open and so $X = A \cup B$ where A and B are disjoint nonempty and open sets in X. This contradicts the fact that X is connected. Therefore X is g^*s^*-connected.

Proposition 7.5. If $f:X \to Y$ is g^*s^*-continuous surjection and X is g^*s^*-connected then Y is g^*s^*-connected.

Proof. Suppose that Y is not connected. Let $Y = A \cup B$ where A and B are disjoint nonempty open sets in Y. Since f is g^*s^*-continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty g^*s^*-open in X. This contradicts the fact that X is g^*s^*-connected. Hence Y is connected.

Proposition 7.6. If $f:X \to Y$ is g^*s^*-continuous map from a connected space X into a topological space Y, then Y is g^*s^*-connected.

Proof. Let Y be not g^*s^*-connected. Then Y can be written as $Y = A \cup B$ where A and B are disjoint nonempty g^*s^*-open sets in Y. Since f is g^*s^*-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are open sets in X. Also $X = f^{-1}(A) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. This contradicts the fact that X is connected. Therefore Y is g^*s^*-connected.

References

N.Gayathri