Bessel Type Function $J^{\theta}_{\beta}$, Bessel Type Operator $\Delta^{\theta}_{\beta}$ and Fractional Fourier-Bessel Type Transform $\mathcal{F}^\theta_{\beta}$


Abstract views: 4 / PDF downloads: 0

Authors

  • Abhisekh Shekhar Department of Mathematics, C. M. Science College (A constituent unit of L.N.Mithila University, Darbhanga, Bihar, India), Darbhanga, Bihar, India

Keywords:

Fractional Fourier transform, Bessel potential spaces, Sobolev type spaces, pseudo-differential operators, Poly-axially operators

Abstract

Fractional Fourier-Bessel type transformation is defined. Then using these transformations the pseudo-differential Bessel type operators $\mathscr{B}^{\theta}_{\beta,~a}$ is also defined. After that we introduce some class of symbols, Sobolev and Bessel type potentials spaces. Properties of these transformations and operators are investigated.

Downloads

Published

29-01-2026

How to Cite

Abhisekh Shekhar. (2026). Bessel Type Function $J^{\theta}_{\beta}$, Bessel Type Operator $\Delta^{\theta}_{\beta}$ and Fractional Fourier-Bessel Type Transform $\mathcal{F}^\theta_{\beta}$. International Journal of Mathematics And Its Applications, 13(4), 159–168. Retrieved from http://ijmaa.in/index.php/ijmaa/article/view/1670

Issue

Section

Research Article