# Centralizing Properties of $\left( \alpha,1\right) $ Derivations in Semiprime Rings

**Abstract views:**67 /

**PDF downloads:**48

## Keywords:

Semiprime rings, $\left( \alpha,1\right)$ derivation, centralizing mappings, homomorphism, antihomomorphism## Abstract

Let R be a semiprime ring with center Z, S be a non-empty subset of R, $\alpha$ be an endomorphism on R and $d$ be an $\left( \alpha,1\right)$ derivation of R.

A mapping $f$ from R into itself is called centralizing on S if $ \left[ f(x),x\right] \in Z $, for\ all\ $ x\in S $.

In the present paper, we study some centralizing properties of $ (\alpha,1) $ derivations in semiprime rings one of the following conditions holds:

$\left( i\right) d\left( \left[ x,y\right] \right) =\left[ x,y\right] _{\alpha,1} $, for all \ $ x,y\in R$.

$\left( ii\right) d\left( \left[ x,y\right] \right) =-\left[ x,y\right] _{\alpha,1} $, for all \ $ x,y\in R $.

$ \left( iii\right) d\left( x\right) d\left( y\right) \mp xy \in Z $, for all\ $ x,y \in R $.

$\left( iv\right) d\left( xoy\right) =\left( xoy\right) _{\alpha,1} $, for all \ $ x,y\in R $ .

$\left( v\right) d\left( xoy\right) =-\left( xoy\right) _{\alpha,1} $, for all \ $ x,y\in R $.

Also we prove that $d$ is centralizing on R if $d$ acts as a homomorphism on R and $d$ is centralizing on S if $d$ acts as an antihomomorphism on R.

## Downloads

## Published

## How to Cite

*International Journal of Mathematics And Its Applications*,

*8*(1), 127–132. Retrieved from http://ijmaa.in/index.php/ijmaa/article/view/184

## Issue

## Section

## License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.